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• First total synthesis of asperchalasine A, 15 steps (LLS)
• Key steps: Diels–Alder & biomimetic oxidative heterodimerization [5+2]
• Unveiling biosynthetic connections of merocytochalasans
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Abstract Here we briefly reviewed recent synthetic progress toward
cytochalasan trimer, asperchalasine A by Tang, Trauner and our group.
This process features a highly stereoselective intermolecular Diels–Alder
reaction and a HWE or RCM macrocyclization to establish the key
monomer aspochalasin B. A late-stage biomimetic oxidative dearomati-
zation of triphenol and subsequent [5+2] cycloaddition cascade fur-
nished asperchalasine A. We anticipate that this key reaction could also
be used for the synthesis of other merocytochalasans, and provide
some insight into the biosynthetic connections of merocytochalasans. 
1 Introduction
2 Total Synthesis of Aspochalasin B 
3 Total Synthesis of Asperchalasine A 
4 Conclusions

Key words biomimetic synthesis, [5+2] cycloaddition, natural prod-
ucts, total synthesis, dimerization

1 Introduction

Cytochalasans are a large family of fungal metabolites
(>400 members) possessing a highly substituted perhydro-
isoindolone scaffold first isolated in 1966.1 They have a
broad range of biological activities by targeting the actin
cytoskeleton. In the past few decades, a series of total syn-
theses and biosynthesis of these fascinating natural prod-
ucts have been accomplished due to their intriguing struc-
tures and bioactivities, including Stork, Thomas, Vedejs,
Trost, Weinreb, Tamm, Myers, Overman, and recently Tang.2
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Recently, the isolation of asperchalasine A by Zhang and
co-workers in 2015 has triggered a burst of isolation of
merocytochalasans, culminated in the discovery of asper-
chalasine A, epicochalasine A, aspergilasine A, asperflavip-

ine A, amichalasine A and their congeners.3 The first sand-
wich-shaped cytochalasan trimer, asperchalasine A3a (1)
was isolated from the fermentation broth of Aspergillus
flaipes (Figure 1). Biologically, asperchalasine A (10) specifi-

Figure 1  Representive structures of cytochalasans, epicocine, and merocytochalasans
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(b) Representative structures of merocytochalasans

O

O
OH

OH

O

O

Me

O

HO

Me

epicochalasine A (14)

Me

HO

MeHN

O
O

Me

Me
MeH

H

H
O

H

aspergilasine A (12)

O

O
OH

OH

O

O

Me

O

HO

Me

Me

HO

MeHN

O
O

Me

Me
MeH

H

H
O

H

asperchalasine A (10)

Me

HO

Me

HN

O
O

Me
Me

MeH

H

OOH
HH

Me

OH

Me

NH

O
O

Me
Me

Me H

O

H

Me

OH

O
OH

asperflavipine A (11)

O

O
OH

OH

O

Me
Me

HO

MeHN

O
O

Me

Me
MeH

H

H

O

HO

O

O
HO

Me

O

Me

OH

Me
NH

O
O

Me

Me
Me H

H

H H
H

amichalasine A (13)

H

H

HMe
Me

Me

O
O

NHMe

Me

O

O

OH

O

OH

Me

Me

HO

MeHN

O
O

Me

Me
MeH

H

H

HO

O

epicochalasine B (15)

O

O
OH

OH

O

O

HO

Me

Me

HO

MeHN

O
O

Me

Me
MeH

H

H
O

Me

O

H

trichalasin H (7)

O O

Me
Me

HNMe

Me

Me

OH

OH

H

HH
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–H



C

X. Long et al. SynpactsSyn  lett

D
ow

nl
oa

de
d 

by
: S

yr
ac

us
e 

U
ni

ve
rs

ity
 L

ib
ra

ry
. C

op
yr

ig
ht

ed
 m

at
er

ia
l.
cally induces significant G1-phase cell cycle arrest in cancer
cell lines (RKO, HCT116, NB4, and HL60), making it a novel
cytoskeletal inhibitor against cancer cells. Biosynthetically,
asperchalasine A might be generated by incorporation of
epicoccine (3, red part) with two molecules of aspochalasin
B (1, blue part).

At the onset of isolation of merocytochalasans in 2015
the development of a scalable, practical, and collective syn-
thetic route to merocytochalasans seemed an insurmount-
ably difficult challenge. Inspired by their biosynthetic con-
nections of merocytochalasans, and pioneering biomimetic
synthesis of epicolactone by Trauner,4 we were led to em-
bark on a careful retrosynthetic analysis of asperhalasine A.

Key to the success of a chemical synthesis approach that
would deliver all these merocytochalasans is a convergent
and scalable route to key monomer aspochalasin B (1).

2 Total Synthesis of Aspochalasin B

The first total synthesis of aspochalasin B (1) was ac-
complished by Trost in 19 steps from CBZ-leucine ester
through an intermolecular Diels–Alder reaction and a palla-
dium-catalyzed Tsuji–Trost macrocyclization (Scheme 1).2j

Notably, the stereocenter of 17-OH of aspochalasin B was
misassigned as 17-S at first.5a Although Trost reported the
spectrum of their synthetic sample was identical with
those of an authentic sample, the actually structure of their
synthetic sample should be 17-R aspochalasin B, which was
reisolated latter by other groups (2)5b and confirmed by our
total synthesis.6b

In 2018, the Tang group, our group, and later the Traun-
er group reported the synthesis of aspochalasin B, the trim-
er asperchalasine A and related dimers, respectively.6 In the

aim of developing a convergent and scalable route to aspo-
chalasin B, we designed a 11-step route by the assembly of
three components of similar complexity.6b Notably, both
triene segment 22 and dienophile 24 (Scheme 2, a) need to
be enantiomerically pure, to avoid the possibility of diaste-
reomerically mismatching in the Diels–Alder reaction.
Triene segment 22 was prepared through two olefination
reactions (Wittig and HWE) of triol 21 in four steps. While
the dienophile 24 was readily prepared through commer-
cially available N-Boc-L-leucine (23) in eight steps.

It is of note that dienophile 24 was very sensitive to acid
and needed to be used immediately after flash chromatog-
raphy purification. With both triene 22 and dienophile 24
in hand, we carried out the key intermolecular Diels–Alder
reaction. A variety of Lewis acid promoters were examined,
such as BF3·OEt2, Et2AlCl, TMSOTf, and Eu(fod)3,7 leading to
the decomposition of triene 22 and dienophile 24. To our
delight, thermal conditions (neat, 100 °C) effectively assist-
ed the Diels–Alder reaction and offered adduct 25. We spec-
ulated that the regioselectivity was mainly induced by dou-
bly activation of dienophile 24 with two electron-with-
drawing groups on a single double bond. While, facial
selectivity might be induced through an endo transition
state with the triene 22 approaching from the less hindered
face to avoid the repulsion of isobutanyl side chain of the
dienophile 24. Nucleophilic addition of lithium dimethyl
methylphosphonate to the hindered methyl ester group of
25, followed by selective desilyation and oxidation of the re-
sulting primary alcohol with DMP furnished aldehyde 27
(56% yield from 25). With this HWE macrocyclization pre-
cursor in hand, we found that Zn(OTf)2, a mild Lewis acid,
could effectively promote this macrocyclization in favor of
intermolecular HWE olefination and no C-18 epimerized
byproduct was detected.2n After global desilyation and se-

Scheme 1  Total synthesis of aspochalasin B by Trost
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lective oxidation of the resulting allylic alcohol of aspocha-
lasin D (2) with TEMPO and p-TsOH·H2O,8 the key monomer
aspochalasin B (1), was prepared in decagram scale.

The protecting group of 17/18 hydroxy has a great influ-
ence on the efficiency of HWE macroolefination (Scheme 2,
b). Actually, in our first-generation approach to aspochala-
sin B, HWE macroolefination precursor 28 was protected
with acetonide, which however cannot be cyclized through
HWE olefination using various conditions, such as Zn(OTf)2,

LiCl/DBU, 9a NaOCH2CF3,2n K2CO3/18-C-6,9b KHMDS, and NaH,
etc.

Only trace amount (7%) of 31 (18-epi of 29) was ob-
tained under the K2CO3/18-C-6 conditions. To confirm the
result, we also prepared aldehyde 30, which could be
smoothly cyclized to 31 under the conditions of Zn(OTf)2.
At this point, we realized that the tethered protection group
of 17/18 hydroxy, such as acetonide, could dramatically in-
fluence the conformation of cyclization precursor 28, re-
sulting in unfavorable conformation and extremely low

Scheme 2  Total synthesis of aspochalasins B and D by Deng
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yield for cyclization. Based on these results, we switched
the protecting group to TBS (27), which was albeit bulky
but flexible, and at this time the HWE macrocyclization
proceeded smoothly with high yield (Scheme 2, a).

At the same time, Tang and co-workers reported their
elegant synthesis of aspochalasin B through a different ap-
proach that combines both Diels–Alder reaction and RCM
reaction (Scheme 3).6a Contrary to thermal promoted

Scheme 3  Total synthesis of aspochalasin B by Tang
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Scheme 5  Total synthesis of asperchalasine A by Deng and Tang
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Diels–Alder reaction by Deng, they found that
(CuOTf)2·PhMe initiated this reaction effectively and afford-
ed 34 as a single adduct. After RCM reaction to construct
the 11-membered macrocycle and subsequent three-step
sequence to install the -hydroxyl ketone, aspochalasin P
(36) was readily prepared. Finally, aspochalasin B (1) was
prepared through selenylation and subsequent oxidative
elimination of aspochalasin P (36) in two steps.

About one month later, the Trauner group reported
their elegant approach to aspochalasin B (1), aspochalasin D
(2), and aspergillin PZ (4, Scheme 4).6c They also used triene
22 and dienophile 24 as Diels–Alder precursors, but in their
synthesis, triene 22 was obtained via catalytic asymmetric
epoxidation, and the intermolecular Diels–Alder reaction
was achieved under high-pressure conditions.

More importantly, they realized the biomimetic conver-
sion of aspochalasin B (1) into intricate pentacyclic aspo-
chalasan aspergillin PZ (4), which was first synthesized by
Overman in 28 steps.10

3 Total Synthesis of Asperchalasine A

With both aspochalasin B (2) and hemiacetal 16 readily
prepared, we turned to explore the intermolecular Diels–
Alder reaction. Both acidic and basic conditions can pro-
mote the isobenzofuran formation through 1,4-elimination
of water or methanol in some precedents. We first tried ba-
sic conditions (MeLi) promoted elimination, and precursor
methanol acetal of 3a indeed afforded the desired diene
with low conversion (40%).To our delight, acetic acid11

turned out to be an efficient promoter for this 1,4-elimina-
tion, and the active diene was further captured in situ by
dienophile aspochalasin B (1) to give two Diels–Alder ad-
ducts. These two adducts, after reductive deallylation (Pd/C,
HCO2NH4)12 turned out to be asperchalasine H (39) and its
regioisomer 40.13 Notably, both asperchalasine H (39) and
its regioisomer 40 are endo adducts, and no exo adducts
were detected under these conditions.

The three protection groups of triphenol have a great
influence on the endo/exo selectivity of the Diels–Alder re-
action: When partially protected hemiacetal 3 was used,
both endo and exo Diels–Alder adducts were obtained, and
this phenomenon was also observed by Tang.5a

Then we turned to the final biomimetic cross-dimeriza-
tion stage (Scheme 5, a). Based on the inspiration of the
unique bicyclo[3.2.1]octadienone structure of asperchala-
sine A (10) we speculate that asperchalasine A (1) is formed
through a base-promoted intermolecular Michael addition
of o-quinone (41) to aspochalasin B (1) and subsequent in-
tramolecular Aldol addition cascade after oxidation of the
electron-rich aromatic ring of 40. The active o-quinone 41
was readily obtained through oxidation of triphenol 40
with potassium ferricyanide and the subsequent Michael–

aldol addition cascade proceeded smoothly under the con-
ditions of sodium bicarbonate aqueous buffer, furnishing
asperchalasine A (10) and its regioisomer 42 in 49% and 5%
yield, respectively. We speculate that the regioisomer 42
might be another natural product not isolated yet. It is of
note that there was a competition between homodimeriza-
tion of the active intermediate o-quinone 41 and cross-di-
merization of o-quinone 41 with aspochalasin B (1). In this
case, we did not observe any homodimerized tetramers like
asperflavipine A.

While, in Tang’s synthesis of asperchalasine A (10), they
also found that the steric effect of the isobenzofuran pre-
cursors played an important influence in controlling the en-
do/exo ratio of the Diels–Alder reactions (Scheme 5, b). Af-
ter treatment of aspochalasin B (1) and hemiacetal 3b with
CSA and subsequent deprotection, they synthesized asper-
chalasines B, D, E, spicarin B, and the regioisomer of asper-
chalasine H (40), which after a biomimetic oxidative [5+2]
cycloaddition afforded the desired asperchalasine A (10).

4 Conclusions

In summary, a brief review of recent synthetic progress
toward aspochalasin B (1) and asperchalasine A (10) is dis-
cussed in this Synpact account. The key features of these
route include: a highly stereoselective intermolecular
Diels–Alder reaction and a HWE or RCM macrocyclization
to establish the key monomer aspochalasin B (1); an inter-
molecular endo-selective Diels–Alder reaction and late-
stage biomimetic oxidative dearomatization and subse-
quent [5+2] cycloaddition cascade to forge the caged bicy-
clo[3.2.1]octadienone ring system.

The total synthesis of aspochalasin B (1), aspergillin PZ
(4), and asperchalasine A (10) opened the gate to other pen-
tacyclic aspochalasans and merocytochalasans, for example,
the most complex one: Asperflavipine A (11) might be gen-
erated by incorporation of two molecules of epicoccine (4,
red part) with two molecules aspochalasin B through Diels–
Alder reaction and [5+2] heterocycloaddition. While there
still have been a lot of challenges en route to these conge-
ners, for example: 1) How to realize the biomatic transfor-
mation of aspochalasin B (1) to other pentacyclic aspochala-
sans, such as trichoderones A (6), B (7), flavichalasines C (8),
E (9)? 2) How to control the stereoselectivity (endo/exo)
and regioselectivity of this Diels–Alder reaction? All these
four isomers are needed for the synthesis of other merocy-
tochalasans. 3) How to promote the desired [5+2] heterodi-
merization rather than homodimerization of o-quinones?
Undoubtedly, these questions will be answered, and these
biomimetic transformations will shed light to the biosyn-
thesis pathway of cytochalasans in due course by synthetic
chemists.
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–H
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