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A B S T R A C T

The ent-kaurane diterpenoid chepraecoxin A (CA) obtained in our previous study showed a potential inhibitory
activity on α-glucosidase (IC50 274.5 ± 12.5 μM). In order to figure out the structure-activity relationships
(SARs), twenty-two derivatives of chepraecoxin A were synthesized by modifying the ester, allyl, double bond
and carboxyl groups, and assayed for their α-glucosidase inhibitory activity. Of them, eight compounds (14–17,
19–22) significantly increased activity with IC50 values ranging from 16.1 to 71.4 μM, even higher than the
positive control, acarbose (IC50 130.3 μM). Especially, compounds 17, 19 and 21 could inhibit α-glucosidase
with IC50 values of 16.9 ± 3.4, 16.1 ± 1.2, and 17.1 ± 0.6 μM, 17-fold higher than CA. The most active
compound 19 was proven to be a non-competitive inhibitor with a Ki value of 19.4 μM based on enzyme kinetics
study. The primary SARs of CA derivatives were summarized for exploring antidiabetic candidates.

α-Glucosidase is a key enzyme for hydrolyzing carbohydrates to ab-
sorbable glucose and other monosaccharides in small intestines. Inhibitors
of α-glucosidase can retard the digestion of carbohydrates, and thus,
control the postprandial blood glucose.1,2 Currently, three α-glucosidase
inhibitors, acarbose, voglibose, and mioglitol, are available in the market
for treating type 2 diabetes, whereas their application is hindered by the
side effects of hepatotoxicity and gastrointestinal symptoms.3

Natural products are interesting resources for searching new α-
glucosidase inhibitors. In our previous investigation, different types of
compounds involving ent-atisane and ent-kaurane diterpenes from
Sapium insigne and Chelonopsis praecox,4,5 monoterpenes and triterpenes
from Mentha haplocalyx,6 and oligostilbenes from Paeonia lactiflora,7

have been revealed with α-glucosidase inhibitory effects. Of these
compounds, diterpenes attract our attention due to their diverse
structures and antidiabetic potency.8–14

Our previous study showed that chepraecoxin A could inhibit α-
glucosidase.5 Structurally, CA consists of the functional groups of car-
boxyl, terminal double bond, and ester groups. In order to explore the
structure-activity relationships and search new antidiabetic candidates,
a series of CA derivatives were synthesized and evaluated for the in-
hibition on α-glucosidase.

To explore the role of the group on C-1 position as well as the
carboxyl group (C-19) for inhibiting α-glucosidase, a series of

derivatives were synthesized as shown in Scheme 1. Derivatives 1–3
were synthesized to reveal the effect of acetoxyl group on C-1 position.
Hydrolysis of CA with NaOH delivered chepraecoxin B (1) in excellent
yield. Subsequent oxidation of 1 using PCC afforded the ketone deri-
vative 2 in moderate yield. When an EtOH/H2O solution of 2 and hy-
droxyl -amine hydrochloride was heated in the presence of sodium
acetate trihydrate, the oxime derivative 3 was obtained in 91% yield.15

To clarify the effect of carboxyl group, the methyl ester derivative 4 was
obtained in 96% yield by methyl esterification.16

As shown in Scheme 2, modification on the allyl position (C-15) and
double bond (Δ16,17) gave derivatives 5–10. Oxidation of CA with SeO2

furnished allylic alcohol derivative 5,17 which was further oxidized to
α,β-unsaturated ketone derivative 6 with Dess-Martin periodinane.18

Compounds 7–9 were synthesized via epoxidation, dihydroxylation,
and Lemieux-Johnson oxidation.19–21 Alkene hydrogenation (H2, Pd/C)
of CA gave 10 as a single diastereomer.22

As shown in Table 1, hydrogenation product 10 showed higher
activity against α-glucosidase than that of CA. Thus, further modifica-
tion on 10 was conducted to develop more potent α-glucosidase in-
hibitors (Scheme 3). Esterification of carboxyl group yielded the methyl
ester 11; deacylation of compound 10 gave compound 12, which was
further converted to the ketone derivative 13 using PCC oxidation. In
order to evaluate the influence of ester side chain on their α-glucosidase
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inhibitory activity, nine derivatives (14–22) with different acyl groups
were synthesized through the condensation of the alcohol 12 with
various anhydrides or carboxylic acids.

The inhibitory activity of all the synthesized derivatives on α-glu-
cosidase was tested with acarbose as the positive control. As depicted in
Tables 1 and 2, the inhibition of derivatives was evaluated at the
concentration of 500 μM, and if the inhibition rates were higher than
50%, the IC50 values were further measured by dose-response study at
different concentrations.

When the acetoxyl group at C-1 position was converted to hydroxyl
(1), carbonyl (2), and oxime (3) groups, their inhibitory activity for α-
glucosidase significantly decreased, which indicated that the acetoxyl
group at C-1 position was important for maintaining activity. Compared
with CA, compound 4 exhibited weaker activity (45.4% vs 95.0%),
suggesting the importance of carboxyl group. When different groups

were introduced into the allyl position (C-15), the obtained compounds
5 and 6 were inactive at the concentration of 500 μM. The similar result
was observed for the derivatives 7 and 8 synthesized by epoxidation
and dihydroxylation. When the terminal double bond was changed to
be carbonyl group, compound 9 showed similar activity with CA
(78.8% vs 95.0%). Compound 10 was obtained by the reduction of
double bond, and showed about a 2-fold increase in α-glucosidase in-
hibitory activity compared with CA. With the fact that compound 10
showed the most potent activity, 12 derivatives starting from 10 were
further synthesized. When the carboxyl group was esterified, compound
11 lost the activity, further supporting the importance of carboxyl
group. Similar with 1 and 2, compounds 12 and 13 were inactive when
the acetoxyl group at C-1 was changed to be hydroxyl or carbonyl
group. By replacing the acetoxyl group with diverse acyloxys, all the
derivatives 14–22 obviously increased activity, but with an exception
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of 18. Different from other derivatives, compound 18 maintained an
additional carboxyl group, implying the polar group at C-1 was un-
favorable for maintaining activity. Among these esterified derivatives,
compounds 17, 19 and 21 exhibited the most potent activity, with IC50
values of 16.9 ± 3.4, 16.1 ± 1.2, and 17.1 ± 0.6 μM, 17-fold higher
than the substrate (IC50 274.5 ± 12.5 μM). This investigation sug-
gested that hydrophobic ester groups at C-1 position were important to
increase activity, and were compatible for aliphatic, alicyclic, and
aromatic side chains.

Compound 19 showed the highest activity against α-glucosidase,
and thus, was performed enzyme kinetics study. As shown in the
Lineweaver-Burk plot (Fig 1), the inhibition type of compound 19 was

noncompetitive, for that Vm was decreased with the increasing of
substrate concentration, but the km remained the same. The inhibition
kinetic parameter (Ki) was determined to be 19.4 μM according to the
Dixon plot.

In total, 22 derivatives of CA were synthesized and examined for
their α-glucosidase inhibitory activity. Fourteen compounds (1, 3–5,
9–10, 14–17, 19–22) were active on α-glucosidase, of which eight
compounds (14–17, 19–22) obviously increased activity, even higher
than the positive control, acarbose. The primary structure-activity re-
lationships were concluded as: (a) the carboxyl group (C-19) is crucial
for maintaining α-glucosidase inhibitory activity; (b) hydrophilic
groups on C-1 position result in the loss of activity; (c) additional

Table 1
α-Glucosidase inhibitory activity of derivatives 1–10.a

R1

COOR2

H

H R4

chepraecoxin A, 1-10

R3

Compounds R1 R2 R3 R4 Inhibition (%)b IC50 (μM)

chepraecoxin A eOAc H H ]CH2 95.0 ± 2.5 274.5 ± 12.5
1 eOH H H ]CH2 52.0 ± 7.9 537.6 ± 16.1
2 ]O H H ]CH2 19.4 ± 0.5 –
3 ]NOH H H ]CH2 77.2 ± 6.7 329.9 ± 8.9
4 eOAc Me H ]CH2 45.4 ± 5.6 –
5 eOAc H eOH ]CH2 22.1 ± 4.4 –
6 eOAc H ]O ]CH2 18.6 ± 6.1 –
7 eOAc H H O 9.6 ± 0.7 –

8 eOAc H H HO OH 7.5 ± 0.6 –

9 eOAc H H ]O 78.8 ± 2.5 261.5 ± 1.5
10 eOAc H H Me 98.4 ± 1.1 146.3 ± 11.8

acarbosec 79.8 ± 0.5 130.3 ± 1.5

a Data were expressed as means ± SD (n = 3).
b The tested concentration was 500 μM; c Acarbose was used as the positive control.
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hydroxyl and carbonyl groups at the allyl position (C-15) are unfavor-
able; (d) the acyloxys at C-1 position are quite compatible for aliphatic,
alicyclic, and aromatic side chains.
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. α-Glucosidase inhibitory activity of derivatives 10–22.a

R1

COOR2

H

H

10-22
Compounds R1 R2 Inhibition (%)b IC50 (μM)
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17 (E) – CH3(CH2)4CH

]CHCOOe
H 91.8 ± 0.8 16.9 ± 3.4

18 HOOC(CH2)2COOe H 17.8 ± 5.5 –
19 O

O

H 99.5 ± 0.2 16.1 ± 1.2

20 O

O

H 96.4 ± 1.0 45.4 ± 7.4

21

O

O
H 97.4 ± 4.6 17.1 ± 0.6

22

N

O

O H 93.0 ± 1.2 71.4 ± 0.7

acarbosec 79.8 ± 0.5 130.3 ± 1.5

a Data were expressed as means ± SD (n = 3).
b The tested concentration was 500 μM.
c Acarbose was used as the positive control.
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