白首乌的化学成分*

陈纪军 张壮鑫 周 包

(中国科学院昆明植物研究所,昆明)

THE CHEMICAL CONSTITUENTS OF CYNANCHUM AURICULATUM

Chen Jijun, Zhang Zhuangxin, Zhou Jun
(Kunming Institute of Botany, Academia Sinica, Kunming)

关键词 白首乌; 萝藦甙元; 凯底甙元

Key words Cynanchum auriculatum, Metaplexigenin, Kidjoranin

自首乌(Cynanchum auriculatum Royle ex Wight),又称耳叶牛皮消,飞来鹤等[1],系萝藦科鹅绒藤属植物,是常用中药,具有养血益肝,固肾益精,乌须黑 发 和 延年益寿等作用[2]。据文献[3]报道其含有较高的磷脂类成分和 C_2 1甾体酯甙。对其临床药理研究表明白首乌总磷酯可以明显提高正常小鼠外周血T淋巴细胞的数量和促进淋巴细胞的转化[3],其 C_2 1甾体酯甙对环磷酰胺引起的免疫受抑小鼠有一定的 调整作用[4]。但有关 C_2 1甾体酯甙成分的化学结构未见报道,我们首次对白首乌进行了 化 学研究,从其粗甙的酸水解产物分离得到了四个 C_2 1甾体酯基甙元,经光谱测定和化学反应确定其结构分别为加加明(gagamine 1),告达庭(caudatin 2),萝藦甙元(metaplexigenin 3),凯底甙元(kidjoranin 4)。有关其配糖体的研究工作将另文发表。

自首乌块根粉末用95% 乙醇回流提三次,每次四小时,减压浓缩溶剂至干,经用国产 D₁₀₁型大孔吸附树酯柱层析,水、95% 乙醇、丙酮洗脱,收集乙醇、丙酮洗脱 液,浓缩至干得粗甙。将粗甙溶于甲醇中,加入等量 5% 盐酸水溶液,水浴上回流两小时,加入等甲醇量的水,减压除去甲醇,以 5% 氢氧化钠水溶液调至中性,以乙 酸 乙 酯 萃取,得粗甙元。粗甙元反复经硅胶柱层析(洗脱剂:丙酮-石油醚;甲醇-氯 仿 交 替 使用)和Mci gcl,(D)S Rp-18柱层析(洗脱剂:水 - 甲醇), F₂₅₄ 硅胶薄板和 Rp-18 反相薄板分离,得到加加明(1),告达庭(2),萝蘑甙元(3),凯底甙元(4)。

化合物(1),mp 180—184-C。分子式C $_{56}$ H $_{48}$ O $_8$ N。 UV λ_{max}^{ELoH} nm(lg ϵ): 204 (4.31),218 (4.34),282 (4.28)。 $\mathrm{IR}\,\nu_{max}^{EBr}$ cm $^{-1}$: 3460 (OH),1705 (C = O),1632 (C = C),1595,1572,1495,1450 (本环),1285 (C - O - C)。 $^{-1}$ L NMR $_8$ (ppm): 1.38(3H, $_8$, 19-Mc),1.58 (3H, $_8$, $_8$ - 6Hz,21-Mc),2.14 (3H,

¹⁹⁸⁸⁻⁰⁶⁻⁰⁷收稿

^{*}国家自然科学基金资助项目

s, 18-Me), 3.90 (1H, m, 3α-H), 5.17 (1H, m, 6-H), 5.35 (1H, q,] = 6Hz, 20-H), 5.38 (1H, dd, J=10, 6Hz, 12α-H), 6.55 (1H, d, J=16Hz, Ar-CH=CH-), 7.20—7.60 (6H, m, Ar-H×5, 吡啶环5-H), 7.85 (1H, d, J=16 Hz, Ar-CH=CH-), 8.32 (1H, br.d, J=8 Hz, 吡啶环4-H), 8.85(1H, br.d, J=4 Hz, 吡啶环6-H), 9.54 (1H, s, 吡啶环2-H), 13C NMR 见表1。 MS m/z, 469 (M*-肉桂酸), 346 (469-烟酸), 328 (346-H₂O), 310 (328-H₂O), 161, 148, 147, 131 (基峰), 124, 123, 106, 105。据以上光谱数据推定化合物(1)为加加明。经薄层层析〔展开剂, A: 丙酮-石油醚(2:3), B: 甲醇-氯仿(1:19), C: 甲醇-水(4:1),以下所使用展开剂相同〕与标准品对照 Rf值 完全一致,混合熔点不下降。

化合物(2),mp 158—160/190—194 C。 分子式 $C_{28}H_{42}O_{76}$ UV λ_{max}^{EtOH} nm (lg ϵ): 219 (3.84)。IR ν_{max}^{KBr} cm⁻¹: 3485 (OH),1708 (C = O),1640 (C = C),1232(C-O-C)。 ¹H NMR δ (ppm): 0.95,0.97 (各3H,d,J = 6.5 Hz,(CH₃)₂ CH₃

CH-), 1.40 (3H, s, 19-Me), 2.00 (3H, s, 18-Me), 2.32 (3H, s, $-\dot{C}$ = CH), 2.52 (3H, s, 21-Me), 3.89 (1H, m, 3 α -H), 5.01 (1H, dd, J= 9, 6 Hz, CH₃

12α-H), 5.35 (1H, m, 6-H), 6.21 (1H, br.s, —Ċ=CH-)。 13C NMR见表 1。MS m/z, 490 (M+), 475 (490-Me), 472 (490-H₂O), 443 (490-COMe), 439 (475-2H₂O), 421 (439-H₂O), 362 (480-莽草酸), 344 (362-H₂O), 326 (344-H₂O), 319 (362-COMe), 301 (319-H₂O), 283 (301-H₂O), 265 (283-H₂O), 247 (265-H₂O), 175, 161, 121, 111 (基峰), 83, 44。据以上光谱数推定化合物 (2) 为告达庭。经薄层层析与标准品对照Rf值完全一致,混合熔点不下降。

化合物(3),mp 265—268°C。分子式C $_{23}$ H $_{34}$ O $_{7}$ 。 $UV\lambda_{max}^{BLQH}$ nm ($lg\epsilon$): 202 (3.71)。 IRv_{max}^{KBr} cm $^{-1}$: 3508 (OH),3478 (OH),1732,1705 (C = O),1240 (C — O — C)。 1 H NMR δ (ppm);1.40 (3H, s, 19-Me),1.92 (3H, s, 18-Me),2.08 (3H, s, 21-Me),2.48 (3H, s, COMe),3.86 (1H, m, 3α-H),4.96 (1H, dd, J=10, 6 Hz, 12α-H),5.33 (3H, m, 6-H)。 13 C NMR见表 1。 MS m/z:422(M $^{+}$),379 (422-COMe),362 (422-AcOH),344 (362-H $_{2}$ O),326 (344-H $_{2}$ O),319 (362-COMe),311 (326-Me),301 (319-H $_{2}$ O),293 (311-H $_{2}$ O,283 (301-H $_{2}$ O),265 (283-H $_{2}$ O),175,163,44。据以上光谱数据推定化合物(3)为 萝卜式。经薄层层析与标准品对照Rf值完全一致。混合熔点不下降。

化合物(4),mp 147—149°C。分子式 $C_{30}H_{38}O_{7}$ 。 $UV\lambda_{max}^{EtoH}$ nm (lge): 204 (4.22), 217 (4.16), 223 (4.19), 280 (4.36)。 IRv_{max}^{KBr} cm⁻¹: 3450 (OH), 1705 (C=O), 1632 (C=C), 1575, 1490, 1450 (苯环),1280 (C-O-C)。 ¹H NMR δ (ppm): 1.43 (3H. s, 19-Me), 2.07(3H, s, 18-Me), 2.52 (3H, s, 21-Me), 3.70 (1H, m, 3α-H), 5.01(1H, m, 6-H), 5.14(1H, dd, J=9,6 Hz, 12α-H), 6.88(1H, d, J=16Hz, Ar-CH=CH-), 7.30—7.70(5H, Ar-H×5), 8.03 (1H, J=16Hz, Ar-CH=CH-)。 ¹³C NMR见表1。 MS m/z: 467(M+-COMe),

449 (467-H₂O), 431(449-H₂O), 362(M⁺-肉桂酸), 344 (362-H₂O), 329 (344-Me), 319 (362-COMe), 311 (329-H₂O), 301 (319-H₂O), 293 (311-H₂O), 283 (301-H₂O), 175, 163, 148, 147, 131 (基峰), 44。据以上光谱数据推定化合物(4)为凯底甙元。经薄层层析与标准品对照Rf值完全一致,混合熔点不下降。

表 1 化合物(1),(2),(3),(4)的¹³C NMR化学位移数据
Table 1 ¹³C NMR Chemical shifts of (1),(2),33,(4)in C₅D₅N

						(1)	(2)	(3)	(4)
Carbon	(1)	(2)	(3)	(4)	Carbon	Cin	Ikem	Ac	Cin
1	39.0	39.1	39.2	39.2	C-1'	166.7	165.9	169.8	165.7
2	32.0	31.8	32.0	32.0	-2'	120.2	114.2	20.8	118.9
3	71.6	71.5	71.5	71.6	-3'	144.0	165.2		144.9
4	43.2	43.0	43.2	43.3	-4'	135.8	38.1		134.8
5	140.2	140.1	140.3	140.4	-5'	128.5	21.0		128.5
6	118.5	118.3	118.4	118.4	-6'	129.3	20.9		129.2
7	33.7	33.7	33.7	33.8	-7 '	130.5	16.5		130.6
8	74.6	73.5	74.4	74.4	-8'	129.0			129.2
9	44.1	44.4	44.5	44.7	-9'	128.2			128.5
10	37.3	37.3	37.3	37.4					
11	25.7	24.9	24.8	25.0		Nic			
12	74.7	74.3	73.4	72.6	C-1"	153.7			
13	57.1	58.0	57.9	58.0	- 2"	126.9			
14	87.5	89.3	89.4	89.5	- 3"	137.3			
15	34.1	34.7	34.8	34.8	- 4 "	123.8			
16	34.9	32.9	32.8	32.9	-5"	151.6			
17	88.9	92.1	92.4	92.4	-6"	164.6			
18	11.4	10.7	10.3	10.6					
19	18.2	18.3	18.3	18.4					
20	76.4	209.7	210.0	209.2					
21	15.4	27.6	27,5	27.5					

致謝 本样品由江苏盐城药品检验所李明菩提供,所有光谱数据由我室仪器组测试。

参考文献

- 1 中国科学院植物研究所主编.中国高等植物图鉴,第三册.北京:科学出版社,1974,473
- 2 粪树生, 阎汝南, 党毅等. 老年医学杂志 1983, 30, 30-36
- 3 龚树生,姚宽路,党毅等.北京中医学院学报 1983; 2,193-197
- 4 粪树生,陶君娣,柳彩环等. 中药通报 1986; 11: 50-52