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A B S T R A C T

The regulation of photosystem I (PSI) redox state under fluctuating light was investigated for four species using
P700 measurement and electrochromic shift analysis. Species included the angiosperms Camellia japonica, Bletilla
striata and Arabidopsis thaliana and the fern Cyrtomium fortunei. For the first seconds after transition from low to
high light, all species showed relatively low levels of the proton gradient (ΔpH) across the thylakoid membranes.
At this moment, PSI was highly oxidized in C. japonica and C. fortunei but was over-reduced in B. striata and A.
thaliana. In B. striata and A. thaliana, the redox state of PSI was largely dependent on ΔpH. In contrast, the rapid
oxidation of P700 in C. japonica was relatively independent of ΔpH, but was mainly dependent on the outflow of
electrons to O2 via the water-water cycle. In the fern C. fortunei, PSI redox state was rapidly regulated by the fast
photo-reduction of O2 rather than the ΔpH. These results indicate that mechanisms regulating PSI redox state
under fluctuating light differ greatly between species. We propose that the water-water cycle is an important
mechanism regulating the PSI redox state in angiosperms.

1. Introduction

Plants absorb light energy to drive photosynthetic electron transport
that converts light energy into the chemical energy required for pri-
mary metabolism. In linear electron flow, electrons from water are
transported to the cytochrome b6/f complex and photosystem I (PSI),
and ultimately to NADP+, to produce NADPH, which is coupled with
the formation of a proton gradient (ΔpH) across the thylakoid mem-
branes. By comparison, cyclic electron transport around PSI (CET-PSI)
forms a ΔpH without producing NADPH. The coordination of linear and
cyclic electron transport balances the production of ATP and NADPH to
optimize the ATP/NADPH ratio required by the Calvin cycle, photo-
respiration and other primary metabolism [1–3]. In addition, angios-
perms also have pseudocyclic electron transport (pseudoCET) that is
mediated by the photo-reduction of O2 (Mehler reaction) [4–6]. During
this pseudoCET, electrons originating from water splitting in PSII are
ultimately used to reduce O2 to water, as a result, this pseudoCET is
called the water-water cycle (WWC). Because the rate of O2 reduction is
only approximately 1% of the maximum O2 evolution in PSII during
steady-state photosynthesis [7,8], the WWC is unlikely to play an im-
portant role in sustaining photosynthesis when grown under constant
light. Recently, we found that the WWC was a major electron sink in
Camellia species when CO2 assimilation was restricted [9], which was

consistent with the importance of the WWC as an electron sink during
photosynthetic induction and at low temperatures [10,11]. In angios-
perms, CET-PSI plays a pivotal role in photoprotection under fluctu-
ating light [12–19]. However, the physiological function of the WWC
under fluctuating light is not well known.

Under natural field conditions, plants experience a highly variable
light environment [19], which is called fluctuating light. A sudden in-
crease in light intensity can induce oxidative damage to the photo-
synthetic apparatus. It has been documented that fluctuating light can
induce significant photoinhibition, particularly to the PSI complex, in
angiosperms, such as Arabidopsis thaliana and rice [12,20]. PSI photo-
inhibition significantly suppresses photoprotection and net CO2 assim-
ilation [6,21–24]. Furthermore, the recovery of PSI from photoinhibi-
tion is a slow process over several days [21,25–27]. Thus, PSI
photoinhibition can significantly impair plant growth [16,17,20,28].
These results indicate the importance of photoprotection of PSI in the
growth of angiosperms under fluctuating light. In angiosperms, luminal
acidification down-regulates the rate of electron transport through the
Cyt b6/f complex (photosynthetic control), contributing to the oxidation
of PSI and thus protecting PSI from fluctuating light [16,17,20,29–31].
This process is largely dependent on CET-PSI because both the pgr5 and
crr6 mutants showed severe PSI photoinhibition under fluctuating light
[16,17,20]. Surprisingly, the activation of CET-PSI cannot prevent PSI
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photoinhibition under fluctuating light in wild-type angiosperms such
as Arabidopsis thaliana and rice [12,20], and damage to PSI by fluctu-
ating light can be a serious problem for angiosperms. However, the
underlying mechanisms of PSI photoinhibition under fluctuating light
in angiosperms have not been yet clarified.

In the water-water cycle, electrons are transported from PSI to O2,
leading to the photoreduction of O2 by the Mehler reaction [4]. The
superoxide is subsequently converted to H2O2 by superoxide dismutase
(SOD), and ultimately, H2O2 is scavenged as water by ascorbate per-
oxidase (APX). The electron sink of the WWC in vivo was first de-
monstrated in algae by Radmer and Kok [32]. The electron flow of
WWC alleviated PSII photoinhibition by functioning as an alternative
electron sink [33]. Subsequently, Baker's group demonstrated the
electron flux in the WWC in a C4 plant, maize [34]. Makino's group
showed a significant contribution of the WWC to total electron flux in
PSII during photosynthetic induction and at lower temperatures in rice
leaves [10,11]. These results suggest that the WWC functions as an
electron sink with a large electron flux in specific materials and ex-
perimental conditions. In Camellia species, the WWC acts as a major
electron sink when CO2 fixation is restricted [9]. Furthermore, Takagi
et al. [35] reported that the angiosperm C. japonica showed sig-
nificantly lower PSI photoinhibition during repetitive short-pulse illu-
mination than other angiosperms, owing to its higher P700 oxidation
ratio. These results suggest that the WWC may act as a safety valve in
response to excitation energy in C. japonica. In fluctuating light, the
sudden increase in light can cause over-reduction of PSI [18,36]. Be-
cause the WWC can mediate the fast photoreduction of O2, we hy-
pothesize that the WWC has the potential to form a large electron sink
in fluctuating light, resulting in the alleviation of PSI photodamage in C.
japonica.

In photosynthetic organisms from cyanobacteria up to gymnos-
perms, photoreduction of O2 to water mediated by flavodiiron proteins
(Flvs) acts as a safety valve for electrons in fluctuating light [37–41].
Flvs forms a large electron sink when the stroma is highly reduced and
protects both photosystems from photodamage in fluctuating light even
in the presence of PGR5-dependent CET-PSI [18]. However, the Flv
genes are not conserved in angiosperms [42]. The introduction of FlvA
and FlvB genes from the moss Physcomitrella patens into wild-type
Arabidopsis relieved the over-reduction of PSI upon the transition from
low to high light, making PSI resistant to fluctuating light [18,36]. If
the WWC can significantly alleviate PSI photoinhibition under fluctu-
ating light as the alternative electron flow mediated by Flvs, over-
expression of the key enzymes of the WWC (SOD and APX) may help to
protect PSI under fluctuating light in angiosperms.

In our pre-experiments, we have examined the redox kinetics of
P700 upon dark-to-light transition in two angiosperms Bletilla striata
and Camellia japonica (Fig. 1). Interestingly, C. japonica showed fast re-
oxidation of P700. In contrast, the fast re-oxidation of P700 was clearly
missing in B. striata. Because the fast re-oxidation of P700 indicates the
outflow of electrons from PSI to O2 [42], the fast PSI re-oxidation in C.
japonica is attributed to the electron flow of the WWC. As a result, C.
japonica shows high WWC activity and B. striata has low WWC activity.
In order to examine the role of WWC in regulating PSI redox state under
fluctuating light, we determined the PSI redox state and the electro-
chromic shift signal under fluctuating light in three angiosperms C.
japonica (with high WWC activity), Bletilla striata and Arabidopsis
thaliana (with low WWC activity) as well as a fern Cyrtomium fortunei
(with Flvs). Our results indicate that the WWC plays a significant role in
adjusting the PSI redox state and alleviating PSI photoinhibition under
fluctuating light in C. japonica, and which is independent of the ΔpH-
dependent down-regulation of plastoquiol oxidation at the Cyt b6/f
complex. This process is similar to the Flv-dependent photo-reduction
of O2 in the fern C. fortunei. By comparison, the regulation of PSI redox
state in B. striata and A. thaliana is largely dependent on the formation
of ΔpH. Therefore, the mechanisms responsible for regulating PSI redox
state upon transition from low to high light differ greatly between

species. The WWC has the potential to compensate for the lack of Flv-
dependent electron sink in angiosperms.

2. Materials and methods

2.1. Plant materials and growth conditions

We used four C3 plants including three angiosperms Camellia japo-
nica (Theaceae), Bletilla striata (Orchidaceae) and Arabidopsis thaliana
(Cruciferae) and one fern Cyrtomium fortunei (Dryopteridaceae) as ex-
perimental materials. The maximum rate of CO2 assimilation for leaves
of B. striata is approximately 9.5 μmol CO2 m−2 s−1 (data not shown).
Plants of C. japonica, B. striata and C. fortunei were grown in a green-
house with high relative air humidity (60%–70%) and 40% full sunlight
in Kunming Institute of Botany, Kunming, Yunnan Province, China
(elevation 1900m, 102°41′E, 25°01′N). Plants of A. thaliana were grown
in another greenhouse with high relative air humidity (50%–70%) and
20% full sunlight. The day/night temperatures in greenhouses were
controlled at about 30/20 °C. At noontime, the maximum photo-
synthetic photon flux density (PPFD) of sunlight was approximately
1990 μmol photons m−2 s−1. Three-year-old potted C. japonica and B.
striata plants and two-year-old potted C. fortunei plants were used for
measurements. For A. thaliana, fully expanded rosette leaves of plants
grown for at least 5 weeks were used for experiments. All plants were
cultivated without water or nutrition stresses and the mature leaves

Fig. 1. Redox kinetics of P700 upon the illumination of dark-adapted leaves of
Camellia japonica (A) and Bletilla striata (B). After dark adaptation under aerobic
or anaerobic conditions for at least 60min, the kinetics of redox changes were
measured upon exposure to actinic light (1809 μmol photons m−2 s−1).
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were used for measurements.

2.2. Chlorophyll fluorescence and P700 measurements

PSI and PSII parameters were recorded simultaneously at 25 °C
using a Dual-PAM 100 measuring system (Heinz Walz, Effeltrich,
Germany). After dark adaptation for 30min, a saturating pulse was
applied to measure the maximum fluorescence and the maximum
change in P700, and then leaves were illuminated at 1178 μmol pho-
tons m−2 s−1 for 10min to activate photosynthetic electron sinks, fol-
lowed by illumination at 59 μmol photons m−2 s−1 for 5min.
Afterward, the actinic light was changed to 1809 μmol photons
m−2 s−1, and the PSI and PSII parameters were recorded. The non-
photochemical quenching in PSII was calculated as NPQ= (Fm – Fm')/
Fm'. Fm and Fm′ represent the maximum fluorescence after dark and light
adaptation, respectively.

The PSI photosynthetic parameters were measured according to the
method of Klughammer and Schreiber [43]. The P700+ signals (P)
could vary between a minimum (P700 fully reduced) and a maximum
level (P700 fully oxidized). The maximum, Pm, was determined by
applying a saturation pulse (300ms and 20,000 μmol photons m−2 s−1)
after preillumination with far-red light for 10 s. Pm' was similarly ob-
tained, except that actinic light was used instead of far-red light. Cal-
culations of PSI parameters included the quantum yield of PSI non-
photochemical energy dissipation due to donor side limitation, Y
(ND)= P/Pm, and the quantum yield of non-photochemical energy
dissipation due to acceptor side limitation, Y(NA)= (Pm – Pm')/Pm.

The P700 redox state during dark-to-light transition was also mea-
sured using a Dual-PAM 100. After dark-adaptation for at least 60min,
the P700 redox changes of P700 were recorded during 10 s illumination
at 1809 μmol photons m−2 s−1. Anaerobiosis was induced by incuba-
tion of the detached leaves in nitrogen atmosphere for at least 60 min.

2.3. Electrochromic shift (ECS) analysis

The ECS signal was monitored as the change in absorbance at
515 nm, using a Dual PAM-100 equipped with a P515/535 emitter-
detector module (Heinz Walz). After dark-adaptation for 30min, the
515-nm absorbance change induced by a single turnover flash (ECSST)
was measured. Subsequently, leaves were illuminated at 1178 μmol
photons m−2 s−1 for 10min, followed by illumination at 59 μmol
photons m−2 s−1 for 3min. Afterward, the actinic light was changed to
1809 μmol photons m−2 s−1, and then the ECS signal was measured
after this light transition for 10 s. Similarly, ECS signals after the tran-
sition from 59 to 1809 μmol photons m−2 s−1 for 20 s, 40 s, 60 s and
120 s were measured following a 3min adaptation at 59 μmol photons
m−2 s−1. We analyzed ECS dark interval relaxation kinetics (DIRKECS)
as described by Sacksteder et al. [44] and Takizawa et al. [45]. The
difference in total pmf between light and dark, ECSt, was estimated from
the total amplitude of the rapid decay of the ECS signal during the dark
pulse. All ECSt levels were normalized against the magnitude of ECSST.
This normalization accounted for variations in leaf thickness and
chloroplast density among the leaf samples [30,45–48]. The slow re-
laxation of the ECS signal was measured to calculate the ΔpH and
membrane potential (ΔΨ) [49,50].

2.4. Photoinhibitory treatments

In the present study, light from a 635 nm light-emitting diode (LED)
equipped in a Dual-PAM-100 was used as actinic light for photo-
inhibitory treatments. After dark adaptation for 30min, the initial va-
lues of Fv/Fm and Pm were measured. Subsequently, leaves were ex-
posed to fluctuating light alternating between 59 and 1809 μmol
photons m−2 s−1 every 20 s for 40min. Afterward, leaves were dark-
adapted for 30min, and the residual values of Fv/Fm and Pm were
measured.

2.5. Statistical analysis

The results are displayed as the mean values of five independent
experiments. One-way ANOVA was used at the α=0.05 significance
level to determine whether significant differences existed between
different treatments.

3. Results

3.1. P700 redox kinetics upon abrupt illumination of dark-adapted leaves

We first determined the P700 redox kinetics upon the illumination
of dark-adapted leaves to actinic light (1809 μmol photons m−2 s−1), to
attempt to examine the alternative electron flow. In the angiosperm C.
japonica, actinic light induced the initial peak of P700 oxidation, which
was followed by its reduction and re-oxidation (Fig. 1A). However, this
P700 re-oxidation phase was not observed in experiments performed
under anaerobic conditions (Fig. 1A), indicating that the fast re-oxi-
dation of P700 in C. japonica is dependent on photo-reduction of O2. In
the experiments with B. striata, we did not observe the P700 re-oxida-
tion phase under both aerobic and anaerobic conditions (Fig. 1A),
suggesting the lack of alternative electron flow via photo-reduction of
O2.

3.2. PSI redox state after the transition from low to high light

We next examined the PSI redox state under fluctuating light. After
the transition from 59 to 1809 μmol photons m−2 s−1 for 10 s, Y(ND)
increased to a 0.90 and Y(NA) decreased to 0.06 in the fern C. fortunei
(Fig. 2A and B). Concomitantly, Y(ND) rapidly increased to 0.78 in C.
japonica but just increased to 0.33 in B. striata (Fig. 2A). Meanwhile, Y
(NA) decreased to a low value of 0.13 in C. japonica but increased to
0.53 in B. striata (Fig. 2B). After this transition for 20 s, Y(ND) reached
the maximum value (> 0.86), and Y(NA) decreased to a low value of
0.07 in C. japonica (Fig. 2A and B). However, the value of Y(ND) just
increased to 0.49 and Y(NA) remained at a high level of 0.37 in B.
striata (Fig. 2A and B). The over-reduction of PSI reaction centers in B.
striata was relieved after this transition for 60 s. These results indicated
that upon a sudden transition from low to high light, the PSI reaction
centers were highly reduced in B. striata, especially during the initial
20 s. However, this over-reduction of PSI was not observed in C. japo-
nica and C. fortunei. Furthermore, NPQ rapidly increased after this
transition for 10 s in all species (Fig. 2C), suggesting the different re-
sponses of the PSI redox state and NPQ upon a sudden increase in light
intensity in B. striata.

3.3. Change in pmf after the transition from low to high light

Because the PSI redox state can be regulated by pmf, we next de-
termined the change in pmf after the transition from 59 to 1809 μmol
photons m−2 s−1 (Fig. S2). During this light transition, the total pmf
decreased slightly (Fig. 3A), but the ΔpH component of pmf increased
(Fig. 3B). After this transition for 10 s, the value of ΔpH in C. japonica
was 0.51. By comparison, after this transition for 120 s, the ΔpH value
increased to 1.04. These results strongly indicate that C. japonica cannot
build up a sufficient ΔpH upon a sudden increase in light intensity, as
was in experiments with B. striata and C. fortunei (Fig. 3B). The change
in the ΔΨ component of pmf after this light transition showed a trend
opposite to ΔpH (Fig. 3C). After this transition for 10 s, the ΔpH/pmf
ratios in C. japonica, B. striata and C. fortunei were 0.32, 0.43 and 0.39,
respectively (Fig. 3D). These ratios increased to 0.77, 0.90 and 0.82,
respectively, after this transition for 120 s (Fig. 3D). These results
suggested that the relatively low ΔpH upon a sudden transition from
low to high light was mainly caused by the imbalanced partitioning of
pmf into ΔpH and ΔΨ.
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3.4. Effects of the ΔpH on the PSI redox state after the transition from low
to high light

To understand the role of the ΔpH in photosynthetic regulation
during transition from low to high light, we pooled the data obtained
after the transition from 59 to 1809 μmol photons m−2 s−1 for 10 s,
20 s, 40 s, 60 s and 120 s. We found that Y(ND) and Y(NA) values in B.
striata were significantly controlled by the magnitude of the ΔpH
(Fig. 4A and B). However, in C. japonica and C. fortunei, Y(ND) and Y
(NA) were relatively independent of ΔpH (Fig. 4A and B). As a result,
the important role of the ΔpH in regulating the PSI redox state was
present in B. striata but was absent in C. japonica and C. fortunei, sug-
gesting the diversity in strategies for regulating the redox state of PSI

between species.

3.5. Photoinhibition in fluctuating light

After the transition from 59 to 1809 μmol photons m−2 s−1 for 20 s,
the over-reduction of PSI occurred in B. striata but was absent in C.
japonica and C. fortunei. As a result, we speculate that the major time
point for PSI photoinhibition in fluctuating light is the initial 20 s after
this transition. To test this hypothesis, we examined the effect of fluc-
tuating light alternating between 59 and 1809 μmol photons m−2 s−1

every 20 s for 40min on PSI and PSII activities in these three species.
After this treatment, PSI activity decreased by 5%, 4% and 22% in C.
japonica, C. fortunei and B. striata, respectively (Fig. 5), indicating that
PSI is more sensitive to fluctuating light in B. striata than in C. japonica
and C. fortunei. Concomitantly, PSII activity decreased slightly (Fig. 5),
indicating the strong resistance of PSII to fluctuating light.

3.6. PSI redox state under fluctuating light in Arabidopsis thaliana

In the model angiosperm Arabidopsis thaliana, the redox state of PSI
under high light is mainly regulated by the ΔpH-dependent photo-
synthetic control at the Cyt b6/f complex rather than the WWC. In order
to further confirm the role of WWC in regulating PSI redox state in C.
japonica, we examined the responses of PSI redox state to a sudden
increase in light intensity for leaves of A. thaliana. After the transition
from 59 to 1809 μmol photons m−2 s−1 for 10 s, Y(NA) rapidly in-
creased from 0.22 to 0.83 (Fig. 6A), suggesting the over-reduction of
PSI upon a sudden transition from low to high light. At this moment, A.
thaliana could not build up a sufficient ΔpH (Fig. 6B). After this light
transition for 60 s and 120 s, the sufficient ΔpH were accompanied with
high levels of Y(ND). As a result, A. thaliana and B. striata showed the
same mechanism for regulating PSI redox state under fluctuating light.

4. Discussion

4.1. The WWC alters P700 redox kinetics upon abrupt illumination of dark-
adapted leaves

As indicated by Ilik et al. [42], measuring the P700 redox kinetics
upon a dark-to-light transition is a simple method for monitoring the O2

photoreduction mediated by Flvs. Because the alternative electron
transport mediated by Flvs is operational in organisms from cyano-
bacteria up to gymnosperms, fast P700 re-oxidation was observed in the
fern C. fortunei (Fig. S1). In the angiosperm B. striata, rapid P700 re-
oxidation was clearly missing (Fig. 1B), suggesting the absence of Flvs.
However, another angiosperm, C. japonica, showed fast P700 re-oxi-
dation (Fig. 1A), which was largely different from the phenomenon in
B. striata. Furthermore, the fast re-oxidation phase in C. japonica was
clearly missing when measured under anaerobic conditions. Because
the final re-oxidation of P700 is generally attributed to the outflow of
electrons from PSI [42], these results indicate the presence of another
O2-dependent alternative electron flow in C. japonica. Cyclic electron
flow around PSI and pseudocyclic electron transport (pseudoCET) are
thought to be important to regulate PSI oxidation (see review [51]).
However, the operation of CET-PSI cannot induce fast PSI re-oxidation
upon a dark-to-light transition in angiosperms [42]. As a result, the fast
PSI re-oxidation in C. japonica should be caused by the operation of
pseudoCET that is responsible for the outflow of electrons from PSI to
O2. PseudoCET includes two pathways: Flv-dependent pseudoCET and
the WWC. Flvs are the main mediators of pseudoCET in photosynthetic
organisms, spanning from cyanobacteria to gymnosperms. However,
these genes are not conserved in angiosperms. As a result, the fast PSI
re-oxidation in C. japonica is attributed to the electron flow of the WWC.
Recently, a study suggested that the WWC was a major electron sink in
Camellia species when CO2 assimilation is restricted [9], based on
measurements of gas exchange and chlorophyll fluorescence. Therefore,

Fig. 2. Changes in PSI redox state and NPQ after the transition from low to high
light. A, Quantum yield of PSI non-photochemical energy dissipation due to
donor side limitation (YND). B, Quantum yield of PSI non-photochemical en-
ergy dissipation due to acceptor side limitation (YNA). C, Non-photochemical
quenching in PSII (NPQ). Before this measurement, the leaves were illuminated
with AL (1178 μmol photons m−2 s−1) for 10min to activate the electron sink
in photosynthesis, followed by illumination at 59 μmol photons m−2 s−1 for
5 min. Afterward, the actinic light was changed to 1809 μmol photons m−2 s−1,
and the values of Y(ND), Y(NA) and NPQ were recorded. Values are means± SE
(n=5).
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the WWC has the potential to alter P700 redox kinetics upon abrupt
illumination of dark-adapted leaves in angiosperms.

4.2. The PSI redox state in fluctuating light is regulated not only by the ΔpH
but also by the WWC in angiosperms

Many studies have confirmed the important role of the ΔpH in ad-
justing the redox state of PSI in angiosperms [3,14–17,30], in addition
to PSII photoinhibition [52]. In general, a strong ΔpH slows down the
electron transfer from PSII to PSI via the Cyt b6/f complex by inhibiting
plastoquinol oxidation (photosynthetic control), leading to the oxida-
tion of P700 and thus preventing PSI photoinhibition [16,30,53]. In
mutants defective in the ability to generate enough ΔpH, excess elec-
tron flow from PSII to PSI led to the over-reduction of electron carriers
in PSI, increasing the production of ROS within PSI and thus causing
photodamage to PSI under high light and fluctuating light
[14,16–18,30]. As a result, the acidification of the lumen is regarded as
the key mechanism to avoid the over-reduction of PSI and to prevent
PSI photoinhibition in response to excess excitation energy. In the
present study, we found that the PSI was highly reduced in B. striata
upon a sudden transition from low to high light (Fig. 2B), which was
accompanied by the relatively low ΔpH (Fig. 3B). As a result, the PSI
redox state was indeed mainly controlled by the magnitude of the ΔpH
in the angiosperm B. striata (Fig. 4), consistent with the phenomenon in
the model plant Arabidopsis thaliana (Fig. 6). By comparison, PSI was
highly oxidized in C. japonica upon a sudden increase in light intensity
(Fig. 2B). Because C. japonica also showed an insufficient ΔpH at this
moment (Fig. 3B), this high level of P700 oxidation should be attributed
to another regulatory mechanism rather than the ΔpH-dependent
photosynthetic control at the Cyt b6/f complex. Specifically, the WWC
favored the outflow of electrons from PSI to O2 and thus led to this fast
oxidation of PSI upon the transition from low to high light, as similar to
the fast re-oxidation of P700 during dark-to-light transition. As a result,
the WWC could play an important role in adjusting the PSI redox state

during transition from low to high light in angiosperms.
Because angiosperms are not able to build up a sufficient ΔpH upon

a sudden transition from low to high light (Figs. 3B and 6B), the ΔpH-
dependent regulatory mechanism cannot optimize the redox state of PSI
during this transition, as indicated by the over-reduction of PSI in B.
striata (Fig. 2B) and Arabidopsis thaliana (Fig. 6A). Therefore, the ΔpH-
dependent regulatory mechanism displays its flaws in fluctuating light.
In contrast, the WWC could induce the fast oxidation of P700 after the
transition from low to high light, even at a relatively low ΔpH. There-
fore, the WWC is another important strategy for regulating the redox
state of PSI under fluctuating light, in addition to ΔpH-dependent
photosynthetic control and PSII photoinhibition. In addition, the WWC
is likely more efficient in adjusting the PSI redox state in fluctuating
light than the ΔpH-dependent regulatory mechanism.

4.3. The WWC alleviates photoinhibition of PSI in fluctuating light

During steady-state photosynthesis under saturating light, the value
of Y(NA) was usually maintained at a low level of approximately 0.1 in
angiosperms [12,13,17,18,54–57,60], diminishing the production of
ROS within PSI and thus protecting PSI from photoinhibition [58,59].
When shifted to fluctuating light, PSI photoinhibition occurred in an-
giosperms such as Arabidopsis thaliana and rice [12,20]. However, the
underlying mechanisms are not well clarified. Our results indicate that
upon a sudden increase in light intensity, the insufficient ΔpH induces
the over-reduction of PSI electron carriers, which explains why fluc-
tuating light treatments induce significant PSI photoinhibition in an-
giosperms such as Arabidopsis thaliana, rice and B. striata. As a result,
although the ΔpH is thought to be the key determinant for photo-
protection of PSI in fluctuating light, the ΔpH-dependent regulatory
mechanism cannot prevent the photoinhibition of PSI under fluctuating
light, even in wild-type plants.

Taking into consideration the changes in the PSI redox state and
ΔpH during the transition from low to high light, we propose that the

Fig. 3. Changes in proton motive force
during transition from low to high
light. A, Total proton motive force
(pmf); B, proton gradient (ΔpH); C,
membrane potential (ΔΨ); D, ΔpH/pmf
ratio. After the transition from 59 to
1809 μmol photons m−2 s−1 for 10 s,
20 s, 40 s, 60 s or 120 s, full ECS decay
kinetics in the dark were monitored to
measure pmf, ΔpH and ΔΨ. The 515 nm
absorption change (ΔAECS) was nor-
malized against ECSST. Values are
means± SE (n= 5).
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initial 20 s after this transition is the major time point of PSI photo-
inhibition under fluctuating light in B. striata. After exposure to

fluctuating light alternating between 59 and 1809 μmol photons
m−2 s−1 every 20 s for 40min, PSI photoinhibition was much stronger
in B. striata when compared with C. japonica and C. fortunei (Fig. 5).
This result was consistent with the changes in the PSI redox state under
fluctuating light (Fig. 2). In B. striata, the insufficient ΔpH during the
initial 20 s resulted in the over-reduction of PSI (Figs. 2 and 3), in-
creasing the production of ROS within PSI and thus causing PSI pho-
toinhibition (Fig. 5). By comparison, due to the operation of the WWC
in C. japonica, PSI was highly oxidized after a sudden transition from
low to high light. Under such conditions, the probability of electron
donation from P700 to O2 is suppressed. As a result, C. japonica can
escape ROS production within PSI in fluctuating light, thus protecting
PSI against photoinhibition. Therefore, we propose that the WWC is
important for suppressing the production of ROS within PSI and alle-
viating PSI photoinhibition in fluctuating light. Because SOD and APX
genes are conserved in angiosperms, over-expression of SOD and APX
has the potential to enhance the capacity of the WWC and thus to al-
leviate the photodamage of PSI in fluctuating light. Therefore, the in-
troduction of the WWC to enhance the resistance of PSI to fluctuating
light may have broad applications in angiosperms and crops in parti-
cular. Further research is needed to explain why the WWC-dependent
regulatory mechanism of the PSI redox state is not conserved in all
angiosperms.

4.4. Why is Flv not retained in angiosperms?

In nonflowering photosynthetic organisms such as the fern

Fig. 4. Changes in Y(ND) (A) and Y(NA) (B) as a function of the ΔpH. After the
transition from 59 to 1809 μmol photons m−2 s−1 for 10 s, 20 s, 40 s, 60 s or
120 s, the values of Y(ND), Y(NA) and ΔpH were measured. Values are
means± SE (n= 5).

Fig. 5. Residual activities of PSI and PSII after fluctuating light treatment. After
exposure to fluctuating light for 40min (alternating between 59 and 1809 μmol
photons m−2 s−1 every 20 s), samples were dark-adapted for 30min, and then
Fv/Fm and Pm were measured. Data were normalized to values before treatment
and are represented as the residual activities of PSI and PSII. Different letters
indicate significant differences among these three species (P < 0.05, n=5).

Fig. 6. Changes in PSI redox state and NPQ (A) and ΔpH (B) after the transition
from 59 to 1809 μmol photons m−2 s−1 measured for leaves of Arabidopsis
thaliana. The PSI and PSII parameters were determined as mentioned in Fig. 2,
and the ΔpH values were recorded as mentioned in Fig. 3. Values are
means± SE (n= 5). Different letters indicate significant differences among
different treatments (P < 0.05).
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Cyrtomium fortunei, the alternative electron flow mediated by Flvs (Fig.
S1) contributed to the rapid PSI oxidation upon the transition from low
to high light (Fig. 2A), even at a relatively low ΔpH (Fig. 3B). Thus, Flvs
are important for protecting PSI against photoinhibition in fluctuating
light in those evolutionary groups [37–41]. However, it is unclear why
Flv genes are not conserved in angiosperms. Here, our results provide
some clues to answer this question. Upon a sudden transition from low
to high light, the ΔpH-dependent regulatory mechanism (photo-
synthetic control) cannot make the PSI highly oxidized due to the in-
sufficient ΔpH. Concomitantly, the operation of the WWC can rapidly
deliver electrons from PSI to O2, thus optimizing the PSI redox state and
alleviating PSI photoinhibition. Therefore, the WWC can compensate
for the deficiency of the ΔpH-dependent photosynthetic control.

5. Conclusions

In summary, here we have highlighted the importance of water-
water cycle for PSI activity under fluctuating light in angiosperms.
Upon a sudden increase in light intensity, plants cannot build up an
enough ΔpH to down-regulate the electron flow from PSII.
Concomitantly, the rapid oxidation of P700 is dependent on photo-re-
duction of O2, which is attributed to the Flv-dependent alternative
electron flow and water-water cycle in nonflowering plants and an-
giosperms, respectively. The reduction of water-water cycle results in
the over-reduction of PSI for the first seconds after an increase in light
intensity, leading to the ROS production within PSI and thus PSI pho-
toinhibition. Taken together, the water-water cycle is a missing me-
chanism regulating the PSI redox state under fluctuating light in an-
giosperms.
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