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Mycobiomes of sympatric Amorphophallus albispathus (Araceae)
and Camellia sinensis (Theaceae) – a case study reveals clear tissue
preferences and differences in diversity and composition
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Abstract
Multiple biotic and abiotic parameters influence the dynamics of individual fungal species and entire communities. Major drivers
for tropical plant endophytes are undoubtedly seasonality, local habitat conditions and biogeography. However, host specializa-
tion and tissue preferences also contribute to the structuring of endophytic mycobiomes. To elucidate such specializations and
preferences, we sampled two commercially important, unrelated plant species, Amorphophallus albispathus and Camellia
sinensis (tea plant) simultaneously at close proximity. The mycobiomes of different tissue types were assessed with high-
throughput amplicon sequencing of the internal transcribed spacer DNA region. Both plants hosted different fungal communities
and varied in α- and β-diversity, despite their neighboring occurrence. However, the fungal assemblages of Amorphophallus
leaflets shared taxa with the mycobiomes of tea leaves, thereby suggesting common driving forces for leaf-inhabiting fungi
irrespective of host plant identity. The mycobiome composition and diversity of tea leaves was clearly driven by leaf age. We
suggest that the very youngest tea leaves are colonized by stochastic processes, while mycobiomes of old leaves are rather similar
as the result of progressive succession. The biodiversity of fungi associated with A. albispathus was characterized by a large
number of unclassified OTUs (at genus and species level) and by tissue-specific composition.This study is the first cultivation-
independent high-throughput assessment of fungal biodiversity of an Amorphophallus species, and additionally expands the
knowledge base on fungi associated with tea plants.
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Introduction

Fungi associated with living plants have continuously been
the subject of intense investigation due to their biological
and functional diversity. They act as parasites, pathogens, de-
composers or mutualists, such as mycorrhizae (Stajich et al.
2009). Compared with host–pathogen mechanisms in crops
and ornamental plants (Dean et al. 2005; Hane et al. 2007),
fungal synecology and biodiversity have been rather poorly
addressed in the past. During recent years, the study of fungal
endophytes has been subject to increasing public awareness
(Peršoh 2015). Among other suggestions, it was hypothesized
that healthy plants could provide a shelter for various fungal
species that become detrimental on the same or on different
host plants at different times, developmental stages, genetic
constitutions or under different environmental conditions
(Kowalski and Holdenrieder 2009), and that some of these
fungi could even threaten human nutrition (Islam et al.
2016). An early study of fungal endophytes closes with the
question as to, "whether the presence of endophytes in healthy
plant tissue hastens the onset of senescence and thus influ-
ences the life span of a plant" (Fisher et al. 1986). Recent
studies have also demonstrated the beneficial role of plant-
associated mycobiomes (Kusari et al. 2013), and approached
the evolution and stability of trophic lifestyles among fungal
endophytes (Delaye et al. 2013). In this respect, investigations
of host and tissue preferences continuously increase our un-
derstanding of the general characteristics, diversity, composi-
tion and succession of fungal endophytes (e.g., reviewed in
Peršoh 2015). Early cultivation experiments have revealed the
coexistence of different fungal species in single needles/leaves
by biochemical partitioning of resources (Carroll and Petrini
1983). These findings were in agreement with Stone (1988),
Johnston et al. (2006), Peršoh (2013) and Zambell and White
(2015) who observed partially highly localized, asymptomatic
fungal infections in different plants.

However, most of the current knowledge on host and tissue
preferences is based on cultivation studies (Petrini and Fisher
1990; Viret and Petrini 1994; Collado et al. 1996; Unterseher
et al. 2007; Joshee et al. 2009). Culture-independent ap-
proaches in general confirm these initial findings, but addi-
tionally reveal an unexpected fungal diversity (e.g.,
Jumpponen and Jones 2009, 2010; Peršoh 2013).

In tropical habitats, in contrast, it is assumed that host pref-
erences of fungal endophytes are less developed (May 1991;
Suryanarayanan et al. 2011; Higgins et al. 2011, Chen and
Kirschner 2017), and are often overlaid or even masked by
climatic, temporal and spatial parameters (Piepenbring et al.
2015; Matulich et al. 2015). However, both cultivation and
cultivation-independent experiments have continuously dis-
covered associations between fungal communities (and spe-
cies) and their tropical host plants (Arnold and Lutzoni 2007;

Unterseher et al. 2013; Solis et al. 2016; Doilom et al. 2016 for
cultivation approaches; Kembel and Mueller 2014 for high-
throughput sequencing).

The aim of this study was to assess mycobiome diversity
and composition of two unrelated but sympatric plants,
Amorphophallus albispathus Hett. (Hetterscheid 1994) and
Camellia sinensis (L.) Kuntze. Due to the host plants’ distinct
taxonomic affiliations (Araceae vs. Theaceae) and the differ-
ent investigated plant tissues, we hypothesized the presence of
clearly visible, plant- and tissue-specific signals among the
mycobiomes. To the best of our knowledge, this is the first
study that has exhaustively investigated the fungal biodiversi-
ty of Amorphophallus plants. In contrast, due to the commer-
cial aspects of Camellia (tea), knowledge about (cultivable)
leaf-inhabiting fungi of this plant is available and serves as a
comparison for our data of Camellia-inhabiting fungi (Agusta
et al. 2006; Kirschner et al. 2009; Chen et al. 2012; Fang et al.
2013; Liu et al. 2015).

Materials and methods

Sampling site at the Mushroom Research Centre
(MRC)

Field work took place at one site, the Mushroom Research
Centre (MRC, Fig. 1) in northern Thailand, in order to mini-
mize confounding effects of local and temporal variation. The
MRC is situated at an elevation of ca. 900 m a.s.l.
(19°07.200’N, 98°44.044′E) in a former forested coffee plan-
tation, north of the city of Chiang Mai. The mixed rain forest
has developed dense understorey vegetation with many lianas.
The canopy trees are dominated by Castanopsis armata,
Lithocarpus echinops (both Fagaceae) and Dipterocarpus
sp. (Dipterocarpaceae).

Studied plants

Amorphophallus albispathus Hett. (Araceae, Alismatales)

The genus Amorphophallus contains approx. 170 species with
a paleotropical natural distribution in disturbed or secondary
tropical lowland forests (Cusimano et al. 2011). The plants
regularly produce one comparatively large, stalked composite
leaf (Hejinowicz and Barthlott 2005), which constitutes the
only aboveground structure apart from the inflorescence (which
was not investigated here). During long periods of dormancy,
the plants only consist of a subterranean tuber devoid of a root
system. The chosen study species occurred abundantly at the
study site. Amorphophallus albispathus was first described
22 years ago from central Thailand (Hetterscheid 1994). Two
recent studies on this species employed high-throughput
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sequencing to identify microsatellites (Zheng et al. 2013) and
glucomannan synthesis pathways (Gille et al. 2011).

Camellia sinensis (L.) Kuntze (Theaceae, Ericales)

This species is a perennial, evergreen woody shrub reaching
an age of approx. 100 years. Commonly, only the youngest
leaves are used for tea production, but some teas (e.g., bricked

black tea) are also made from older leaves and twigs (Zheng
et al. 2015). The tea produced from leaves of C. sinensis be-
longs to one of the most consumed beverage globally (e.g.,
Cabrera et al. 2006). Therefore, this plant species is one of the
best studied plants worldwide, especially regarding the multi-
tude of antibacterial, antiviral, antitoxic, antifungal, neuropro-
tective, anti-oxidant, antihypertensive and otherwise bioactive
compounds such as polyphenols, catechins and alkaloids

Fig. 1 Characteristics of the study site in northern Thailand at the
Mushroom Research Centre (MRC). The blue circle in (a) shows its
location on a map of Thailand (photo source: commons.wikimedia.org,
credit: OCHA). b A closer satellite view of the area of Chiang Mai with
the blue circle enclosing the MRC area (photo source and credit: maps.
google.com). The aerial view of the sampling site in (c) indicate the close

proximity of the Amorphophallus and Camellia sampling site (photo
source and credit: maps.google.com). d An individual plant of
Amorphophallus consisting of a single, stalked leaf and a submerged
bulb. e The upper part of a tea shrub. The topmost, youngest, leaves
can be clearly distinguished from the older ones by their bright green
color
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found in the plant (reviewed, e.g., in Wisemann et al. 1997;
Harbowy et al. 1997; Friedman 2007). Further studies have
focused on the detection of metabolites (Daglia et al. 2014),
potentially cancer protective effects of tea products (Cabrera
et al. 2006; Yang et al. 2011) or fermentation processes during
tea production (Zheng et al. 2015).

Sampling, sample preparation and sequencing

Field work was conducted in August 2013 at the MRC and at
the tea plantation at ca. 100 m linear distance. Within a 25-m
radius, a total of five fully turgescent Amorphophallus indi-
viduals were found. They were carefully excavated and dis-
sected into leaflets, petioles, tubers and roots. Tubers and roots
were cleaned in water, then the tubers were peeled and the
inner tissue was cut into pieces of approx. 0.5 cm in size with
a clean razor blade. Leaflets, petioles and roots were chopped
accordingly, then all tissues were submerged in 70% ethanol
for 5 min and air-dried in a clean and draft-free indoor envi-
ronment. Tissue-specific fragments were divided into tripli-
cates without keeping track of the identity of the individual
plants. For Camellia, ten plants were randomly chosen in a
similar-sized area and ten young leaves (first and second fully
expanded leaves) and ten clearly older leaves from lower parts
of the shrub were collected per plant. Fragmentation and sur-
face treatment were the same as for Amorphophallus leaflets.
All samples were instantly dried over silica gel, stored at am-
bient temperature and transferred to the laboratory (at the
University of Greifswald, Germany).

Fragments from two micro-spatulas were used for genomic
DNA extraction with the Charge Switch gDNA Plant Kit
(Invitrogen). Multiplexing prior to Illumina high-throughput
sequencing followed protocols as described in Unterseher
et al. (2016) and Eusemann et al. (2016). In brief, a two-step
PCR was carried out. First, a PCR (30 cycles) amplifying the
full-length fungal ITS region with the primer pair ITS1F-ITS4
and adding a first pair of short sample-specific identifier
oligos. Second, a much shorter PCR (5 cycles) added another
pair of identifier oligos, the Illumina-specific adapter and se-
quencing primer regions. Concentration adjustment, pooling
and sequencing were achieved as described in Siddique and
Unterseher (2016). The raw Illumina reads are provided under
the NCBI SRA accession SUB2198867 (release date 05/05/
2017).

Sequence analysis and biodiversity assessment

Amplicons were sequenced in pair-end mode; however, initial
analyses of read quality conducted with the free software
FastQC (www.bioinformatics.babraham.ac.uk/projects/
fastqc/; accessed November 2016) showed overall lower
read quality for R2 (reverse reads covering the ITS2 region)
than for R1 reads (forward reads covering the ITS1 region).

This led to a much lower recovery rate of R2 reads after
quality filtering. All analyses were therefore conducted with
R1 reads only.

The bioinformatics environment QIIME (Navas-Molina
et al. 2013) and additional tools (Bálint et al. 2014;
Bengtsson-Palme et al. 2013) were used for read processing
as described in Unterseher et al. (2016). In brief, the workflow
consisted of stringent quality filtering using phred scores of
≥30 for at least 75% of the read length, demultiplexing, open
reference OTU picking at 97% similarity threshold imple-
mented in the Bpick_open_reference_otus.py^ command of
QIIME (He et al. 2015) and automated taxon annotation with
the recent version of UNITE’s dynamic reference data set
(Koljalg et al. 2013; available from https://unite.ut.ee/
repository.php, last accessed July 2016). During these steps,
rare OTUs with less than 5 reads were removed from the
resulting OTU table (for justification of global removal of
rare OTUs, see Brown et al. 2015). With conventional spread-
sheet work, the data were further curated by removing tenta-
tive non-fungal OTUs (those returning ‘unassigned’ after tax-
on annotation; see Online Resource 1).

Fungal diversity was assessed with species accumulation
curves, Fisher’s alpha (a richness index, representing all spe-
cies in a dataset), Shannon index (considering both richness
and abundance) and two Hill numbers from Hill’s series of
diversity (N1 = exponent of Shannon index, representing
Bcommon^ species, N2 = inverse Simpson index, representing
Babundant^ species according to Hill 1973) in combination
with statistical tests (e.g., ANOVA of the multivariate gener-
alized linear models).

Nonmetric multidimensional scaling (NMDS) and prin-
cipal coordinate analysis (PCO) based on Bray–Curtis dis-
tances of square root-transformed read abundances were
used to visualize community composition. The distinc-
tiveness of leaf mycobiomes in different subdatasets was
tested with a permutational multivariate analysis of vari-
ance using distance matrices (PERMANOVA, 999 permu-
tations). For the analysis of taxonomic composition, the
results from OTU clustering and automatic taxon assign-
ment refined by manual queries against NCBI and UNITE
databases were used. All data were visualized by
highlighting all unidentified fungi, the 20 most abundant
OTUs were identified to genus level, and all combined
remaining taxa by proportional read counts (relative abun-
dances of all OTUs sum up to 1 for each sample).

Analysis of the tea mycobiome continued in more detail.
The most abundant OTUs from Camellia were selected and
OTUs with similar distribution patterns across samples were
identified by hierarchical clustering of a Bray–Curtis distance
matrix constrained by sample order, using the ‘coniss’
clustering.

All biodiversity analyses were performed in R v.3.3.1
(available freely on https://www.r-project.org/, last accessed
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July 2016), and the corresponding script and all necessary data
files are available as Online Resource 2.

Results

Illumina paired-end sequencing resulted in 3,989,197 raw
ITS1 and ITS2 reads, respectively. Sequence processing
retained 1,060,681 (26.6%) ITS1 and 36,900 (1%) ITS2 reads.
Library size of ITS1 reads did not differ between the two host
plants (t = −0.18, df = 13.86, p = 0.86) with an average of
21,708 reads for Amorphophallus and 22,606 reads for
Camellia samples (Online Resource 3, Fig. S1). The median
library size was 19,324 and ranged from 3876 to 53,059 reads
per sample. The largest library size was obtained from
Amorphophallus petioles followed by young tea leaves.
Similar sequencing depth was recovered from the remaining
tissues (roots, tuber, leaflets of Amorphophallus and old tea
leaves; Online Resource 3, Fig. S2). Sequencing effort was
not correlated with OTU richness (Online Resource 3, Fig.
S3). OTU abundance distributions of the different host- and
tissue-specific assemblages partly deviated from each other
(Online Resource 3, Fig. S4, S5).

Richness and other diversity measures

Comparative analysis revealed significantly higher fungal
richness for Camellia than for Amorphophallus (Fig. 2a).
Moreover, old tea leaves hosted significantly more OTUs than
young tea leaves (Fig. 2b). Roots, tuber and petiole tissues had
the lowest richness (Fig. 2c), whereas OTU richness of
Amorphophallus leaflets almost approached that of old tea
leaves (Fig. 2d).

Analysis of further diversity indexes confirmed the results
from the richness analyses (Table 1; Online Resource 3, Fig.
S6). Mycobiome diversity of Camellia was significantly
higher for all five indexes than that of Amorphophallus, and
old tea leaves hosted higher diversity than young tea leaves
(Table 1). Amorphophallus leaflets showed the highest diver-
sity among the four tissues investigated for this plant
(Online Resource 3, Fig. S6).

Community analysis and taxonomic composition

Mycobiomes of the two host plants differed significantly from
each other as shown by community analysis with non-metric
multidimensional scaling (NMDS; Online Resource 3, Fig.
S7), principal coordinate analysis and permutational multivar-
iate analysis of variance (PCO and PERMANOVA; Fig. 3a).
Samples of the two plants clearly separated along the most
important ordination axis 1, whereas within-group variation
was mainly displayed along the axis 2, which held approx.
50% less explanatory power than axis 1 (Fig. 3a). Mycobiome

composition of Amorphophallus leaflet samples displayed
similarities with that of tea leaf samples in general. When
analyzing mycobiome composition of young and old
Camellia leaves, a clear separation of their corresponding
samples became apparent (Fig. 3b). In addition, samples of
young leaves were more broadly dispersed in ordination
space, especially along axis 2 compared with the narrower
placement of samples from old leaves (Fig. 3c). However,
tests for multivariate within-group dispersion (variance in
the average distance of group members to the group centroid)
failed to display significant differences (ANOVA: F = 2.45,
p = 0.188). The separate analysis of Amorphophallus samples
revealed the leaflets as the most distantly placed samples in
ordination space (Fig. 3b, Online Resource 3, Fig. S7).

Taxonomic assessment revealed 101 different genera from all
major terrestrial phyla of the kingdom Fungi. The proportion of
OTUs that could not be annotated to genus level
(Bunidentified^) was highest for fungi associated with tubers
of Amorphophallus and generally remained high with an aver-
age of 52% across all samples (Online Resource 3, Fig. S8). The
identified genera (Fig. 4) displayed clear compositional patterns:
the four tissues of Amorphophallus were highly variable in
taxonomic composition, with, for example, clear signs of
arbuscular mycorrhiza in roots (e.g.,Claroideoglomus in sample
s02_Root; Fig. 4). TheAmorphophallus leaflets displayed partly
overlapping taxonomic composition with the tea leaves.
Taxonomic overlap was the largest between young and old tea
leaves, but taxonomic composition of young tea leaves showed
higher taxonomic heterogeneity than old tea leaves with one to a
few highly dominant taxa per sample (Fig. 4). Old leaves
contained several equally abundant genera with a significantly
higher evenness compared to young leaves (measured as
Simpson index; t test: t = − 3.5, df = 9.44, p = 0.006).

The shared mycobiome between old and young leaves is
also reflected in the 20 most abundant OTUs (Fig. 5).
However, a clear bipartition of young and old leaves is appar-
ent, both in the topology and in the heatmap itself. Samples
from young leaves were characterized by individual sets of a
limited number of highly abundant OTUs. There was little
overlap between the samples, which resulted in long branches
within the cluster topology. In contrast, old leaves displayed a
more balanced abundance distribution among their corre-
sponding samples.

Discussion

First assessment of the Amorphophallus mycobiome

According to our knowledge, this is the first comprehensive
published dataset of asymptomatic fungi associated with the
genus Amorphophallus including all major parts of the plant,
except for the inflorescence (for pathogenic fungi, refer to
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Misra et al. 2003; Deng et al. 2011; Yu et al. 2014). This plant
genus is popular among amateur and professional gardeners
due to its unique life style and eye-catching appearance (Beath
1996; Kite and Hetterscheid 1997; Barthlott et al. 2009;
Punekar and Kumaran 2010). It is also of commercial interest
in the food and pharmaceutical industries (Chua et al. 2010;
Zheng et al. 2013) due to the unique biochemistry of the
storage organs (Khan et al. 2008; Chua et al. 2010). Our con-
tribution will help to generate a fundamental knowledge base
on fungal groups within this plant. The associated molecular
data might be compared with the ever-growing curated fungal
barcoding database (e.g., plant pathogens: Nilsson et al. 2014;
indoor fungi: Abarenkov et al. 2016) in the near future. This

might also facilitate the assessment of biological risks (i.e.
fungal pathogen load, invasive species) associated with global
trade of such plants (cf. Beenken and Senn-Irlet 2016 for
invasive fungi of Switzerland).

Leaflets hosted the most distinct fungal assemblage, with
significantly lower heterogeneity between samples of the same
tissue than between samples of different tissues. Roots, tubers
and petioles displayed more similar, but still significantly dif-
ferent, fungal assemblages (Figs. 3, 4). This general pattern
suggests a pronounced influence of tissue type (anatomy, mor-
phology, physiology, biochemistry) and small-scale environ-
mental conditions on the detectable fungal composition.
Roots are only temporarily present during flowering, leaf

Fig. 2 Comparative analysis of OTU richness obtained from the two host plants (a), young and old tea leaves (b), the four Amorphophallus tissues (c)
and all tissue samples (d)
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formation and assimilation. Clear signs of Glomeromycota
were identified exclusively in root samples (41 OTUs, 43.7%
of total root sequences; Online Resource 1), suggesting
arbuscular mycorrhizal symbiosis for the Amorphophallus spe-
cies under investigation (Smith and Smith 1997; Brundrett
2006). When the leaf of Amorphophallus plants ages and dies,
the roots are retracted and the plant consists solely of the dor-
mant tuber. This perennial underground storage organ un-
dergoes various changes in physiology and size throughout a
typical vegetation cycle of the plant (Chua et al. 2010), which
could lead to a pronounced turnover of fungal composition at
different times of sampling. The petiole of Amorphophallus
leaves is structurally unique with respect to its anatomy and
durability (Hejnowicz and Barthlott 2005). It can be considered
a distinct organ with fundamental importance for the plant,
since it elevates the single photosynthetically active leaf up to
3.5 m into the air for up to 18 months (A. gigas; Hejnowicz and
Barthlott 2005). The fact that both roots and petiole arise di-
rectly from the tuber might explain the relatedness of their
fungal assemblages. The leaf blade finally interacts most
strongly at the plant–atmosphere interface. Its leaflets contain
the photosynthetic machinery and have unique physiological
and biochemical properties compared with the other parts of
the plant. Taking into account the predominantly aerial coloni-
zation of leaves by fungi (Rodriguez et al. 2009), the observed
confounding effect of host plant identity (different plant species
have different mycobiomes) and tissue type (aerial photosyn-
thetic tissues have similar mycobiomes) was logically consis-
tent (Figs. 3, 4).

Only one OTU was identified across all Amorphophallus
samples (5.7% of all root sequences, 12.7% of all tuber reads,
27.9% of all petiole reads and 1.2% of all leaflet reads;
Online Resource 1). This OTU belongs to one of the most
abundant OTUs and was assigned with highest similarity to
a type-derived sequence of Malassezia restricta (CBS 7877,
NR_103585.1, UNITE SH176394.07FU), a yeast that can be
considered as a systemically occurring endophytic fungus of
A. albispathus. Whereas species of the genus Malassezia are
part of the healthy human skin mycobiota, they also comprise
well-known human (animal) pathogens (Gaitanis et al. 2012).
It is thus abundantly detected in built environments
(Pitkaranta et al. 2008), but has also been found as plant-
associated fungi (Tondello et al. 2012; Nasanit et al. 2015;
Eusemann et al. 2016) or in plant-pathogenic nematodes
(Eberlein et al. 2016). The presence of systemic and for the
plant potentially beneficial fungi as well as the comparatively
large proportion of unidentified OTUs warrants further inves-
tigations of Amorphophallus mycobiomes.

The mycobiome of tea leaves

It is commonly accepted that the composition of entire
phyllosphere mycobiomes and the behavior of single fungalTa
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species correlate with physical, biochemical, physiological and
seasonal leaf properties (Lodge and Cantrell 1995; Collado
et al. 1999; Osono 2008; Olbrich et al. 2010; Jumpponen and
Jones 2010; Hunter et al. 2010; Matulich et al. 2015;
Unterseher et al. 2016). In turn, these leaf properties are influ-
enced by host species, leaf age, exposure, health status, local
climate (season) and microbial colonization (Brossa et al. 2009;
Müller and Ruppel 2014; Jensen et al. 2015).

Leaves of C. sinensis are rich in catechins, a group of poly-
phenols known for their antioxidant-related effects (Graham
1992), caffeine, theanine and various other secondary com-
pounds (Song et al. 2012). It has been shown recently that the
proportion and quantity of these compounds are dependent on
geography and climate (Lee et al. 2010) as well as on leaf age

(Lee et al. 2011; Song et al. 2012). Cultivation studies have
revealed a clear influence of leaf age and/or seasonality on fungal
endophytes of Camellia japonica (Osono 2008) and C. sinensis
(Fang et al. 2013), and additionally demonstrated a "remarkable
organizational preference in tea plants" (Fang et al. 2013).

Due to our own project structure, we eliminated seasonal
and geographic variation and assessed mycobiome diversity
solely in relation to leaf age. All diversity indexes as well as
the richness accumulation curves had significantly larger
values for old leaves when compared to young leaves. The
significant discrimination between old and young tea leaves
are retained when analyzing community composition.
Pr inc ipa l coord ina te ana lys i s (F ig . 3) , NMDS
(Online Resource 3) and the heatmap-cluster analysis (Fig.

Fig. 4 Taxonomic composition of the 20 most abundant genera displayed as relative read proportions. The remaining 81 genera are subsumed under
Others. All OTUs which were not identified to genus level are displayed as unidentified (the lowest light-pink-colored bars)

Fig. 3 Mycobiome composition as revealed with principal coordinate analysis (PCO) for all data (a) and for Amorphophallus (b) and Camellia (c)
separately
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5) displayed two significantly separated mycobiome groups
with a pronounced higher variability of community compo-
sition among the young leaf samples. In young leaves,
which are plucked for tea production, the proportion of
yeast-like taxa was also higher compared with old leaves.
Little is known about the role of phyllosphere yeasts of tea
plants; however, it is thought that they profoundly influence
fermentation processes, reduce the risk of molding and
spoilage, and enhance the quality of the end product
(Sansone et al. 2007; Xu et al. 2011).

Our own findings for C. sinensis generally agree with that
of Osono (2008) for C. japonica, who identified a positive
correlation between leaf endophyte richness of C. japonica
and age of the leaf measured as years. However, the study of
Osono (2008) was to some degree held back by a limited
number of samples as well as reliance on fungal cultivation,
both of which impose limits on the fungal richness being

discovered (see also Langarica-Fuentes et al. 2014 and
Siddique et al. 2017 for a comparison of cultivation and
high-throughput sequencing).

Currently, we can only speculate about the reasons for the
observed high mycobiome variability and dominance of sin-
gle OTUs in young leaves. Young leaves might be structurally
more susceptible to fungal infection and less selective than the
older leaves, allowing for an intensified and dynamic compe-
tition among the endophytes themselves. In addition the mi-
crobial and fungal colonization patterns on leaf surfaces might
differ between young and old leaves, thus influencing inter-
nally growing fungi in a different way. With increasing age,
the leaf chemistry changes: it has been shown that theanine
and caffeine concentrations decrease with increasing leaf age,
whereas the level of some major catechins (e.g.,
epigallocatechine) were up to 10-fold higher in older than in
younger leaves (Song et al. 2012). Catechins are known for

Fig. 5 Heatmap of the most abundant OTUs in the tea leaf mycobiome.
The left half displays community composition of young leaves which are
characterized by sample-specific patterns of a few abundant OTUs. OTUs

from old leaves (right half) displays higher levels of co-occurrence and a
less pronounced abundance of single OTUs
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pronounced bactericidal activity and inhibitory effects against
human pathogenic yeasts (Friedman 2007). This will result in
selective gradients over time, and our data as well as the work
of Osono (2008) suggest that initial stochastic colonization
might be replaced by a progressive succession of endophyes,
potentially caused by, e.g., leaf chemistry and interfungal
competition.

In conclusion, we hypothesize that the generally high di-
versity, evenness and stable mycobiome of older tea leaves
were established due to the specifics of the biochemical profile
(and maybe also microbiological composition) of the leaves,
which resulted in a continuous selective pressure on the colo-
nizing fungi.
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