FOUR NEW ALKALOIDS FROM

Celastrus angulatus

LIU JI-KAI (刘吉开), JIA ZHONG-JIAN (贾忠建), WU DA-GANG (吴大刚)*,
ZHOU JUN (周 俊)* AND ZHU ZI-QING(T. T. CHU 朱子清)
(Institute of Organic Chemistry, Lanzhou University)

Received February 5, 1988.

Key words: _Celastrus angulatus_, insecticidal plants, sesquiterpene alkaloids.

The roots of _Celastrus angulatus_ Maxim. are used in folk medicine for antipyretic and anti-wandering arthritis purpose. It also has been used as insecticide[^1]. The seven alkaloids were isolated from the root-bark of this plant. They are all

![Alkaloid Structure](image)

1. \(R_1 = \text{OFu} \quad R_2 = \text{H}_3\text{C} - \text{CH} - \text{C} = \text{O} \)
2. \(R_1 = \text{OBz} \quad R_2 = \text{OCOCH}_3 \)
3. \(R_1 = \text{OFu} \quad R_2 = \text{CH}_2\text{CH}_2\text{CH}_3 \quad \text{C} = \text{O} \)
4. \(R_1 = \text{OFu} \quad R_2 = \text{OCOCH}_3 \)

![Structural Formulas](image)

Fig. 1

[^1]: Kunming Institute of Botany, Academia Sinica.
new natural products. In this note, we wish to report the structures of four of them, which are the prototype of a series of alkaloids present in the members of the celastraceae family. These alkaloids belong to mayteline-type. They were characterized by the presence of a nicotinoyl ester substituted on a highly oxygenated sesquiterpene nucleus. The structures of compounds 1, 2, 3 and 4 are shown in Fig. 1.

The formulas of compounds 1, 2, 3 and 4 by high-resolution mass spectrometer are as follows:

1, C₄₄H₆₄NO₁₃ (671.2676, calcd.: 671.2578; amorphous);
2, C₇₆H₆₃NO₁₁ (653.2516, calcd.: 653.2473; amorphous);
3, C₉₃H₇₂NO₁₀ (685.2624, calcd.: 685.2735; amorphous);
4, C₆₉H₇₇NO₁₀ (643.2327, calcd.: 643.2265; amorphous).

Intense peaks present in the mass spectra of these four compounds at m/z 95, 105, 106 and 124 were assigned to (C₃H₁₇O⁺), (C₃H₉O⁺), (C₂H₆NO⁺) and (C₃H₇NO⁺).

Table 1

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.80 d(3.3)</td>
<td>5.65 d(3.3)</td>
<td>1.70 m</td>
<td>6.05 s</td>
<td>2.22 m</td>
<td>2.60 m</td>
<td>5.37 d(6.5)</td>
<td>4.96, 4.62 d(13), d(13)</td>
<td>1.54 s</td>
<td>1.54 s</td>
<td>1.59 s</td>
</tr>
<tr>
<td>2</td>
<td>5.84 d(3.3)</td>
<td>5.65 d(3.3)</td>
<td>1.70 m</td>
<td>6.18 s</td>
<td>2.22 m</td>
<td>2.60 m</td>
<td>5.49 d(6.5)</td>
<td>5.00, 4.62 d(13), d(13)</td>
<td>1.54 s</td>
<td>1.58 s</td>
<td>1.61 s</td>
</tr>
<tr>
<td>3</td>
<td>5.80 d(3.3)</td>
<td>5.65 d(3.3)</td>
<td>1.72 m</td>
<td>6.05 s</td>
<td>2.23 m</td>
<td>2.60 m</td>
<td>5.37 d(6.5)</td>
<td>4.94, 4.64 d(13), d(13)</td>
<td>1.52 s</td>
<td>1.52 s</td>
<td>1.58 s</td>
</tr>
<tr>
<td>4</td>
<td>5.80 d(3.3)</td>
<td>5.64 d(3.3)</td>
<td>1.71 m</td>
<td>6.15 s</td>
<td>2.22 m</td>
<td>2.60 m</td>
<td>5.39 d(6.5)</td>
<td>5.09, 4.60 d(13), d(13)</td>
<td>1.54 s</td>
<td>1.56 s</td>
<td>1.58 s</td>
</tr>
</tbody>
</table>

Note: Chemical shifts in ppm are relative to internal TMS. Values in parentheses are coupling constants in Hz.

Table 2

<table>
<thead>
<tr>
<th>Compd.</th>
<th>UV λmaxnm (logε)</th>
<th>IR νmaxcm⁻¹</th>
<th>MS (m/z)</th>
<th>(α)D(c0.5) (MeOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>252(3.6176) 220(4.0286) 202(4.1323)</td>
<td>3500(br.) 1735(br.) 1590 1365 1240(br.) 870 760 740</td>
<td>671(M⁺) 656(M⁺-15) 629(M⁺-42)</td>
<td>551 124 106 95 71 43</td>
</tr>
<tr>
<td>2</td>
<td>263(3.5005) 224(4.1181) 201(4.2442)</td>
<td>3500(br.) 1740(br.) 1590 1365 1235(br.) 870 740 715</td>
<td>653(M⁺) 638(M⁺-15) 611(M⁺-42)</td>
<td>533 516 124 106 105 43</td>
</tr>
<tr>
<td>3</td>
<td>254.5(3.6043) 222(4.0946) 201.5(4.1619)</td>
<td>3500(br.) 1740(br.) 1590 1365 1230(br.) 870 760 740</td>
<td>685(M⁺) 670(M⁺-15) 643(M⁺-42)</td>
<td>565 124 106 95 85 43</td>
</tr>
<tr>
<td>4</td>
<td>256(3.6451) 204(4.3889)</td>
<td>350(br.) 1740(br.) 1590 1365 1235(br.) 870 760 740</td>
<td>643(M⁺) 628(M⁺-15) 601(M⁺-42)</td>
<td>523 124 106 95 43</td>
</tr>
</tbody>
</table>
respectively. The mass spectral fragmentations of compounds 1, 2, 3 and 4 were similar and all showed ions for the loss of CH₃ and CH₂CO from the molecular ions. The infrared spectra showed the presence of free hydroxy (3500 cm⁻¹, br.) and ester group (1740 cm⁻¹, br.). The ¹H-NMR (400 MHz) spectral data of these compounds are shown in Table 1.

In the ¹H-¹H COSY of compound 1, the cross peaks between H-1 and H-2, H-8 and H-9, H-8 and H-7, H₅-11 and H₆-11 were observed. It also showed the cross peaks between 4-OH and H-3, 4-OH and H-12. The NOESY of compound 1 showed the cross peaks between H-9 and H₄-11, H₄-11 and H₅-11, H-6 and H-7, H-8 and H-7, 4-OH and H-3. The ¹³C-NMR chemical shifts of compound 1 (from C-1 to C-15) are respectively as follows: 68.2, 68.1, 29.3, 65.3, 91.1, 78.5, 48.9, 34.2, 71.6, 55.1, 69.7, 41.9, 84.6, 25.2 and 25.6 (solvent in CDCl₃).

These data were analyzed and compared with related compounds²⁻⁹. The position and configuration of the substituents were proposed as shown in Fig. 1. The continuing work and test of physiological effect are in progress.

The authors thank Prof. W. A. König, Institut für Organische Chemie der Universität Hamburg, for high-resolution MS measurements and HAN Xiu-wen in Spectrospin AG (Industriestrasse 26, CH-8117 Fallanden/Zürich) for measurements of two-dimensional NMR. The authors also thank Prof. WANG De-zu, Kunming Institute of Botany, for running ¹H NMR spectra.

REFERENCES