文章编号:1001-6880(2008)04-0622-05

紫金龙的生物碱成分研究

吴颖瑞^{1,2},赵友兴¹,刘玉清¹,周 俊^{1*}

¹中国科学院昆明植物研究所 植物化学与西部资源持续利用国家重点实验室,昆明 650204; ²中国科学院研究生院,北京 100049

摘 要:从云南白族药物紫金龙 (*Dactylicapnos scandens*)中分离得到了 11个生物碱,分别鉴定为 6-acetonylsanguinarine(1)、7-hydroxy-dehydroglaucine(2)、demethylsonodione(3)、dihydrosanguinarine(4)、isocorydione(5)、 glaucine(6)、N-methylisocorydine(7)、isocorydine(8)、protopine(9)、magnoflorine(10)和 haitinosporine(11)。其中 化合物 1~5,7,10~11为首次从该植物中分离得到。

关键词:紫金龙;生物碱;化学成分

中图分类号: R284. 2; O946. 91

文献标识码:A

A lka loids from Dactylicapnos scandens

WU Ying-ru^{1,2}, ZHAO You-xing¹, LU Yu-qing¹, ZHOU Jun^{1*}

¹State Key Laboratory of Phytochen istry and Plant Resources in West China, Kunning Institute of Botany, Chinese Academy of Sciences, Kunning 650204, China; ²Graduate School of Chinese Academy of Sciences, Beijing 100049, China

Abstract: Eleven alkabids were isolated from the ethanol extract of Dacty licapnos scandens and characterized as 6-acetonylsanguinarine (1), 7-hydroxy-dehydroglaucine (2), demethylsonodione (3), dihydrosanguinarine (4), isocorydione (5), glaucine (6), N-methylisocorydine (7), isocorydine (8), protopine (9), magnoflorine (10) and haitino sporine (11), on the basis of spectroscopic analysis and comparison of their spectral data with those reported Among them, compounds 1-5, 7, 10-11 were isolated from this plant for the first time

Key words: Dacty licapnos scandens; alksloids; chemical constituent

In troduction

The Bai folk drug 'Zi Jin Long ' is the dried roots of *Dactylicapnos scandens* (D. Don) Hutch, which mainly grows at a certain altitude of between 1500 and 1800 meters in the Chinese provinces Yunnan and Guangxi ^[1]. It is used in the treatment of hypertension, inflammation, blooding and pain ^[2]. Eight alkaloids from the plant have been reported so far ^[3,4]. During our search for bioactive entities from indigenous Yunnan herbs, we undertook the chemical study on the whole plants of *D. scandens*, and eleven alkaloids were isolated They were identified as 6-acetonylsanguinarine (1), 7-hydroxy-dehydroglaucine (2), demethylsonodione (3), dihydrosanguinarine (4), isocorydione (5), glaucine (6), N-meth-

ylisocorydine (7), isocorydine (8), protop ine (9), magnoflorine (10) and haitino sporine (11) by their spectral data and comparison of their spectral data with those reported Compounds 1-5, 7 and 10-11 were isolated from this plant for the first time.

Material and Methods

Genera l

Column chromatography: silica gel (200-300 mesh; H, Qingdao Marine Chemical Inc., Qingdao, P. R. of China); Sephadex LH-20 (Amershan Bioscience); reversephase C-8 silica gel (40-63 µm, Merck, Darm stadt, German). Melting points were determined on aXRC-1 apparatus and uncorrected Optical rotations were carried out on a Jasco P-1020 polarimeter UV spectra were obtained on a Shimadzu UV 2401 PC spectrometer, and MS spectra on a VG Auto spec-3000 NMR spectra were recorded on a Bruker AM-400 (400 MHz/ 100 MHz) spectrometer and chemical shifts were given

Received March 27, 2007; Accepted May 23, 2007

^{*} Corresponding author Tel: 86-871-5223264; E-mail: jzhou@mail kib. ac. cn

Fig. 1 Compounds 1-11 from Dactylicapnos scandens

in with TMS as internal reference. Fractions were monitored by TLC and spots were visualized by spraying the silica gel plates with Dragendorff 's reagent

Plant material

The roots of *D. scandens* were purchased at Lijiang Prefecture, Yunnan Province. The identify of plant material was verified by Prof Zhou Jun The specimen (ZJ 2006-09-2) was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences

Extraction and isolation

The dried roots of *Dactylicapnos scandens* (D. Don) Hutch (4. 5 kg) were powered and refluxed in 90% EOH (10 L) for 3 \times 3 h After removal of the solvent by evaporation, the concentrated extract was suspended in water and extracted successively with chloroform and n-butanol The chloroform extract (300 g) was divided into two fractions A and B by dry column chromatography(DCC) eluted with EOAcMeOH (5 1) on silica gel Fraction A (63. 0 g) was submitted to DCC with petrol-Me₂CO $(3 \ 1)$ to give four fractions A1-A4. Fraction A1 (13. 8 g) was subjected to DCC on silica gel with petrol-EOAc $(10 \ 1)$ to obtain three fractions A1-1-A1-3. Recrystallization of A1-1 in CH₃Cl-Me₂CO (1 1) yielded compound 1 (224 mg). Fraction A1-2 was subjected to reverse phrase column chromatography on Rp-8 eluted with $Me_2CO-H_2O(1 \ 1-9 \ 1)$ to give compounds 2(23 mg) and 3(5 mg). Compound 4(224mg) was recrystallized from A2 (9. 85 g) in Me₂CO.

Fraction A3 VLC on silica gel H eluted with petrol-Me₂CO (4 1-1 1) to give two fractions A4-1 and A4-2 Fraction A4-1 (3, 65 g) was subjected to vacuum liquid chromatography (VLC) on silica gel H eluted with petrol-Me₂CO (2 1-1 1) to give two fractions A3-1 and A3-2 Fraction A3-1 was submitted to column chromatography on the Sephadex LH-20 eluted with CHCl₃-CH₃OH (1 1) to give compounds **5** (17 mg) and **6** (5 mg). Fraction A4 was subjected to was submitted to VLC on silica gel H eluted with pretrol-EO-Ac (4 1-1 1) and to reverse phrase column chromatography on Rp-8 eluted with Me₂CO-H₂O (1 1) to give compound **7** (17 mg). Compound **8** (625 mg) was obtained from recrystallization of fraction B from CHCl₃-Me₂CO (1 1).

The *n*-butanol extract (100 g) was divided into three fractions C-E by DCC on silica gel eluted with CHC_b-MeOH-H₂O (7 3 0 5). Compound **9** (2 05 g) was obtained from fraction C (10 9 g) by recrystallization from CHC_b-MeOH (1 1). Fraction D was submitted to VLC on silica gel H eluted with CHC_b-EOH-EOAc-H₂O (4 4 2 1), reverse phrase column chromatography on Rp-8 eluted with CH₃OH-H₂O (0 1-1 1) and Sephadex LH-20 eluted with CH₃OH-H₂O (8 2) successively to give compounds **10** (24 mg) and **11** (8 mg).

Structure identification

6-Acetonylsangunarine (1) Cobrless needles (CHCl_b), mp. 195-197 , [$]_{D}^{17}$ + 20. 3 °(CHCl_b, 0. 15). EHMS m/z (%): 389 (18), 333 (25), 332

(100). ¹H NMR (400 MHz, CDC ¹/_k) : 7.68 (1H, d, J = 8.9 Hz, H-10), 7.50 (1H, s, H-4), 7.38 (1H, d, J = 8.9 Hz, H-11), 7.13 (1H, s, H-1), 6.88 (1H, d, J = 8.9 Hz, H-9, 6.80 (1H, d, J = 8.9 Hz, H-12), 6.10(2H, s, H-20), 6.08(2H, s, H-19), 4.92(1H, m, H-6, 2.65 (3H, s, NCH₃), 2.64 (1H, dd, J =15.9, 3.6 Hz, H-1a), 2.38 (1H, br m, H-1b), 2.07 (3H, s, H-3);¹³ C NMR (100 MHz, CDCk) : 104.3 (C-1), 142.2 (C-2), 147.2 (C-3), 99.8 (C-4), 54.1 (C-6), 148.1 (C-7), 147.6 (C-8), 116.7 (C-9), 107.7 (C-10), 124.2 (C-11), 120.1 (C-12), 138.7 (C-13), 115.6(C-14), 125.1(C-15), 130.9(C-16), 126.9(C-17), 123.2(C-18), 101.4(C-19), 101.7 (C-20), 42.9 (NCH_3) , 46.6 (C-1), 206.3 (C-2), 30.2 (C-3). The MS and NMR spectral data were in consistent with those reported [5].

7-Hydroxy-dehydroghucine (2) Green needles (CHCl₃), mp. 240-242 . FAB-MS m/z (%): 370 $(M^+, 100)$.¹ H NMR (400 MHz, CDCl_k) : 9.10 (1H, s, H-11), 7.06(1H, s, H-8), 6.97(1H, s, H-3), 6.60 (1H, s, OH), 3.90 (3H, s, OMe-1), 4.02, 4.03, 4.05 $(each 3H, s, 3 \times OCH_3)$, 3. 36 (2H, m, H-5), 3. 26 (2H, m, H-4), 3.06 $(3H, s, NCH_3)$;¹³ C NMR (100) MHz, CDCl_k) : 149.1 (C-1), 150.6 (C-2), 110.5 (C-3), 31.2(C-4), 130.2(C-4a), 50.5(C-5), 129.5(C-6a), 142.2 (C-7), 118.2 (C-7a), 109.1 (C-8a), 145.9(C-9), 144.6(C-10), 106.6(C-11), 101.4(C-11a), 118.5 (C-11b), 125.3 (C-11c), 55.5, 55.7, 56. 3, 59. 9 (4 \times OCH₃), 40. 4 (NCH₃). The MS and NMR spectral data were in consistent with those reported [6].

D en ethylsonod ione (3) Green prisms (CH₃OH), mp. 230-232 . EHMS m/z (%): 339 (45), 338 (100).¹ H NMR (400 MHz, CD₃OD) : 7.02 (1H, s, H-7), 6.97 (1H, s, H-3), 5.91 (1H, s, H-9), 3.94 (3H, s, OCH₃-2), 3.89 (3H, s, OCH₃-10), 3.64 (2H, m, H-5), 3.32 (3H, s, NCH₃), 3.10 (2H, m, H-4); ¹³ C NMR (100 MHz, CD₃OD) : 140.6 (C-1), 154.6 (C-2), 112.5 (C-3), 127.1 (C-3a), 29.1 (C-4), 51.2 (C-5), 40.8 (NCH₃), 151.1 (C-6a), 103.9 (C-7), 135.8 (C-7a), 187.4 (C-8), 105.5 (C-9), 165.7 (C-10), 177.4 (C-11), 120.0 (C-11a), 125.2 (C-11b), 125.2 (C-11c), 57.4 (OCH₃-2), 56.8 (OCH₃-10). The MS and NMR spectral data were in consistent with those reported [7].

D hydrosanguinarine (4) Colorless crystals (CHCl_k), mp. 195-196 . FAB MS m/z (%): 334 $(M^+, 100)$.¹ H NMR (400 MHz, C₅D₅N) : 7.87 (1H, d, J = 8.0 Hz, H-11), 7.85 (1H, s, H-4), 7.62 (1H, s)d, J = 8.0 Hz, H-12), 7.45 (1H, d, J = 8.0 Hz, H-10), 7. 30 (1H, s, H-1), 6. 98 (1H, d, J = 8.0 Hz, H-9), 6.06 (2H, s, OCH₂O-2, 3), 6.03 (2H, s, OCH₂O-7, 8), 4. 28 (2H, s, H-6), 2. 56 (3H, s, NCH₃); ¹³ C NMR (100 MHz, C₅D₅N) : 104.8 (C-1), 148.8 (C-2), 148.2 (C-3), 101.1 (C-4), 127.0 (C-4a), 142.9 (C-4b), 48.7 (C-6), 113.9 (C-6a), 145.2 (C-7), 147.8(C-8), 107.7(C-9), 116.8(C-10), 124.9(C-10a), 127.5 (C-10b), 120.9 (C-11), 124.5 (C-12), $131.5(C-12a), 41.5(NCH_3), 101.8(OCH_2O-2, 3),$ 102.0 (OCH₂O-7, 8). The MS and NMR spectral data were in consistent with those reported ^[8].

Isocoryd ione(5) Amombous violet powder, mp. 205-. FAB MS m/z (%): 356 (M⁺, 100). ¹H NMR 207 $(400 \text{ MHz}, \text{DMSO-}d_6) : 7.23 (1H, s, H-7), 6.79$ (1H, s, H-3), 6.02 (1H, s, H-9), 3.51 (2H, m, H-5), 3. 31 (3H, s, NCH₃), 3. 11 (2H, m, H-4), 3. 95 (3H, s, OCH₃-1), 3. 91 (3H, s, OCH₃-2), 3. 84 (3H, s, OCH₃-10); 13 C NMR (100 MHz, DMSO- d_6) : 142.8 (C-1), 151.9(C-2), 112.9(C-3), 129.1(C-3a), 28.3(C-4), 49.5 (C-5), 40.1 (NCH₃), 150.1 (C-6a), 97.1 (C-7), 135.8 (C-7a), 185.4 (C-8), 105.1 (C-9), 163.8 (C-10), 177.4 (C-11) 118.3 (C-11a), 126.1 (C-11b), 116.8 (C-11c), 59.8 (OCH₃-1), 56.5 $(OCH_3 - 2)$, 56.3 $(OCH_3 - 10)$. The MS and NMR spectral data were in consistent with those reported ^[9]. Glaucine (6) Colorless crystals, mp. 120-122 $\begin{bmatrix} 1 \\ D \end{bmatrix}_{D}^{17}$ 110.2 °(EOH, 0.10). FAB MS m/z (%): 355 $(M^+, 100)$.¹ H NMR (400 MHz, CDC₁) : 8.05 (1H, s, H-11), 6.76 (1H, s, H-8), 6.58 (1H, s, H-3), 3.91-3. 99 (9H, 3s, OCH₃-2, 9, 10), 3. 65 (3H, s, OCH₃-1), 3. 30-2. 30 (7H, m, C-4, C-5, C-6a, C-7 aliphatic protons), 3.55 (3H, s, NCH₃);¹³ C NMR (100 MHz, CDC_{k}) : 144.1 (C-1), 151.7 (C-2), 110.2 (C-3), 128.7 (C-3a), 29.4 (C-4), 53.5 (C-5), 70.1 (C-6a), 35.6(C-7), 129.2(C-7a), 110.9(C-8), 147.8(C- 9), 147.3 (C-10), 111.9 (C-11), 124.5 (C-11a), 126.9 (C-11b), 126.8 (C-11c), 60.3 (OCH₃-1), 56.4 (OCH₃-2,9,10), 44.1 (NCH₃). The MS and NMR spectral data were in consistent with those reported^[10].

N-M ethylisocoryd ine (7) Prisms (CH₃OH), mp. 215-217 , $\begin{bmatrix} 1_D^{17} & 140.2 & (CH_3OH, 0.15) \end{bmatrix}$. FAB -MS m/z (%): 356 (M⁺, 100).¹ H NMR (400 MHz, CD_3OD) : 6. 40 (1H, d, J = 8.0 Hz, H-8), 6. 28 (1H, d, J = 8.0 Hz, H-9), 6.25 (1H, s, H-3), 3.51 (3H, s, s) OCH_3), 3. 43 (3H, s, OCH_3), 3. 45 (3H, s, OCH_3), 3.37 (1H, br. s, H-6a), 3.05-3.02 (2H, m, H-5), 2. 94 (1H, br. d, J = 12.4 Hz, H-7ax), 2. 91 (3H, s, NCH_3), 2. 82-2. 25 (2H, m, H-4), 2. 52 (1H, br d, J =12. 4 Hz, H-7eq), 2. 43 (3H, s, NCH₃); ¹³ C NMR (100 MHz, CD₃OD) : 142.9 (C-1), 152.9 (C-2), 111.1 (C-3), 129.3 (C-3a), 29.6 (C-4), 51.2 (C-5), 71.4 (C-6a), 31.5 (C-7), 127.5 (C-7a), 119 (C-8), 112.7 (C-9), 149.4 (C-10), 144.3 (C-11), 127.3 (C-11a), 134.3 (C-11b), 112.2 (C-11c), 62.1 (OCH₃-1), 55.9 (OCH₃-2, 10), 55.3, 52.4 (NCH₃). The MS and NMR spectral data were in consistent with those reported ^[11]. Isocorvdine(8) Colorless crystals, mp. 85-87 $\begin{bmatrix} 1_{D}^{17} - 185.2 \text{ °(CHC}, 0.05) \text{ . E HMS } m/z (\%) \text{ : } 341 \end{bmatrix}$ (35), 326 (75), mp. 175-178 .¹ H NMR (400 MHz, DM SO $-d_6$) : 8. 66 (1H, s, H-OH), 6. 98 (1H, d, J = 8.0 Hz, H-8, 6.91 (1H, d, J = 8.0 Hz, H-9), 3.87, 3.81 3.67 (9H, 3s, MeO-1, 2, 10), 4.06 (1H, s, H-6a), 3.75-3.46(2H, m, H-5), 3.38(1H, m, H-4ax), $3.18(1H, m, H-7eq), 3.00(3H, s, NCH_3), 2.59(1H, CH_3)$ s, 7-ax), 2. 30 (1H, m, H-4eq);¹³ C NMR (100 MHz, $DMSO-d_6$) : 144.1 (C-1), 152.8 (C-2), 112.0 (C-3), 127.2 (C-3a), 19.0 (C-4), 51.7 (C-5), 62.1 (C-6a), 32.2 (C-7), 126.6 (C-7a), 119.3 (C-8), 111.7 (C-9), 149.1 (C-10), 144.4 (C-11), 119.2 (C-11a), 123.3 (C-11b), 125.2 (C-11c), 61.6 (CH₃O-1), 56.3 (CH_3O-10) , 56.3 (CH_3O-11) , 41.4 (NCH_3) . Its melting point, MS and NMR were in consistent with those reported ^[11].

Protop ine(9) Colorless crystals(CH₃OH), mp. 205-207 . FAB MS m/z (%): 354 (100).¹ H NMR (400 MHz, CD₃OD) : 7. 04 (1H, s, H-1), 6. 65 (1H, s, H-4), 6. 88 (1H, d, J = 7. 6 Hz, H-11), 6. 67 (1H, d, J = 7. 6 Hz, H-12), 4. 17 (2H, br. s, H-13), 3. 00-3. 50 (4H, m, H-5, 6), 6. 10 (2H, s, OCH_2O-2 , 3), 6. 06 (2H, s, OCH_2O-9 , 10), 2. 79 (2H, br. s, H-8), 2. 50 (3H, s, NCH₃); ¹³ C NMR (100 MHz, CD₃OD) : 108. 1 (C-1), 148. 0 (C-2), 149. 3 (C-3), 102. 6 (OCH_2O-2 , 3), 109. 7 (C-4), 132. 2 (C-4a), 28. 0 (C-5), 55. 4 (C-6), 41. 8 (NCH₃), 54. 4 (C-8), 127. 4 (C-8a), 146. 2 (C-9), 147. 8 (C-10), 101. 4 (OCH_2O-9 , 10), 111. 6 (C-11), 121. 3 (C-12), 119. 0 (C-12a), 35. 0 (C-13), 197. 3 (C-14), 132. 5 (C-14a). The MS and NMR spectral data were in consistent with those reported ^[12].

Magnoflorine (10) Yellow prisms (CH_3OH) , mp. 242-245 , $[]_{D}^{17}$ 195. 2 °(CH₃OH, 0. 20). FAB-MS m/z (%): 342 (M⁺, 100).¹ H NMR (400 MHz, CD_3OD) : 6. 39 (1H, d, J = 7.7 Hz, H-8), 6. 24 (1H, d, J = 7.7 Hz, H-9, 6. 21 (1H, s, H-3), 3. 51 (3H, s, OCH₃), 3. 43 (3H, s, OCH₃), 3. 37 (1H, br.m, 6a), 3.05 (1H, m, H-5eq), 3.02 (1H, m, H-5ax), 2.94 (1H, br. d, J = 12.4 Hz, H-7ax), 2.91 (3H, s, NCH_3 , 2.82 (1H, m, H-4ax), 2.52 (1H, br. d, J =12. 4 Hz, H-7eq), 2. 43 (3H, s, NCH₃), 2. 25 (1H, br. d, J = 12.8 Hz, H-4eq);¹³ C NMR (100 MHz, CD_3OD) : 152.0 (C-1), 150.9 (C-2), 118.7 (C-3), 118.4(C-3a), 24.6(C-4), 62.1(C-5), 70.5(C-6a), 31.4(C-7), 122.4(C-7a), 111.3(C-8), 110.2(C-9), 147.3 (C-10), 147.1 (C-11), 122.0 (C-11a), 121.3 (C-11b), 126.3 (C-11c), 43.6 (NCH₃), 49.9 (NCH_3) , 56.3 (OCH_3-2) , 56.5 (OCH_3-10) . The MS and NMR spectral data were in consistent with those reported^[13].

Ha it nospor ine (11) White prisms (CH₃OH), mp. 242-245 , [$]_D^{17}$ -110. 5 °(CH₃OH, 0. 20). FAB-MS m/z (%): 342 (M⁺, 100).¹ H NMR (400 MHz, DM SO- d_6) : 7.05 (1H, d, J = 8.5 Hz, H-11), 6.87 (1H, d, H-4), 6.85 (1H, d, H-1), 6.83 (1H, d, J =8.5 Hz, H-12), 4.96 (1H, dd, J = 8.0, 4.2 Hz, H-C-13a), 4.79 (1H, d, J = 15.7 Hz, H-8a), 4.54 (1H, d, J = 15.7 Hz, H-8b), 4.00 (1H, m, H-6a), 3.82 (1H, m, H-6b), 3.82 (3H, s, OCH₃-2), 3.80 (1H, m, H-13a), 3.80 (3H, s, OCH₃-3), 3.24 (1H, m, H-5a), 3.16 (1H, m, H-5b), 2.80 (1H, m, H-13b), 2.80 $(3H, s, NCH_3)$; ¹³ C NMR (100 MHz, DMSO- d_6) : 111.9 (C-1), 147.8 (C-2), 145.9 (C-3), 112.6 (C-4), 122.8 (C-4a), 22.8 (C-5), 60.6 (C-6), 38.5 (NCH_3), 60.8 (C-8), 114.4 (C-8a), 142.4 (C-9), 145.8 (C-10), 112.0 (C-11), 119.3 (C-12), 122.1 (C-12a), 27.8 (C-13), 79.2 (C-13a), 120.9 (C-13b), 56.1 (OCH_3-3), 55.7 (OCH_3-2). The MS and NMR spectral data were in consistent with those reported ^[14].

References

- ¹ Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita Flora Reipublicae Popularis Sinicae, Thmus 32 ' Beijing: Science Press, China, 1999. 120.
- 2 State Administration of Traditional Chinese Medicine of the People's Republic of China, Zhonghua Bencao Shanghai: Shanghai Press of Science and Technology, 1999, 3, 641.
- 3 Lu LP, Wang HN, Wu DG Alkaloids from Dactylicapnos scandens A cta B ot Yunnan, 1987, 12: 367-368
- 4 Yan TQ, Ai TM. Study on the constituents of *Dactylicapnos* scandens Hutch Chin Tradit Herb D nugs, 2004, 35: 861-862.
- 5 Koul S, Razdan TK, Andotra CS, et al Benzophenanthridine alkabiods from Corydalis flabellata Planta Med, 2002, 68: 262-265.
- 6 Chang FR, Wei JL, Teng CM, et al Antiplatelet aggregation

constituents from Annona purpurea J Nat Prod, 1998, 61: 1457-1461.

- 7 Chen IS, Chen JJ, Tsai JL, et al New p-quinonoid apophine alkaloids and antiplatelet aggregation constituents of *Heman*dia sonora Planta M ed, 1995, 61: 537-539.
- 8 Oechslin SM, König CM, Oechslin-merkel K, et al O. An NMR study of four benzophenanthridine alkabids J Nat Prod, 1991, 54: 519-24.
- 9 Lee SS, Chen CK, Chen CH. Chemical constituents from *De-haasia triandra*. 1. three new alkabids, isocorydione, norisorydione, and dehatriphine, from the leaves *J N at P rod*, 1996, 59: 56-58.
- Kerr KM, A lan Kook AM, Davis PJ. High field and 2D-NMR study with the apophine alkaloid glaucine *J N at Prod*, 1986, 49: 576-582.
- 11 Marsaioli AJ, Reis FAM, Magalhaes AF, et al ¹³ C NMR analysis of apophine alkaloids *Phytochemistry*, 1979, 18: 165-169.
- 12 Qin HL, Wang P, Li ZH, et al The establishment of the control substance and ¹H NMR fingerprint of M acleaya m icrocarpa (Maxim) Fedde Chin J Anal Chen, 2004, 9: 1165-1170.
- 13 Barbosa-Filho JM, Da-Cunha EVL, Com éio ML, et al Cissaglaberrin ine, an aporphine alkaloid from Cissan pelos glaberrin a Phytochemistry, 1997, 44: 959-961.
- 14 Guo YY, Lin LB, Fu XW, et al Study on alkaloids from Tinospora hainanensis Acta Pharm Sinica, 1999, 34: 690-693.