Bisleuconins A-D: a pair of epimeric ent-kauranoid dimers and two new asymmetric analogues isolated from Isodon leucophyllus

Hai-Bo Zhang ${ }^{\text {a,b }}$, Jian-Xin Pu ${ }^{\text {a,* }}$, Yong Zhao ${ }^{\text {a }}$, Fei He ${ }^{\text {a }}$, Xiao-Nian Li ${ }^{\text {a }}$, Xiao Luo ${ }^{\text {a }}$, Li-Guang Lou ${ }^{\text {c }}$, Han-Dong Sun ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China
${ }^{\mathrm{b}}$ CAS Key Laboratory of Marine Bio-resources Sustainable Utilization, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
${ }^{\text {c }}$ Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China

ARTICLE I NFO

Article history:

Received 19 June 2011
Revised 15 August 2011
Accepted 23 August 2011
Available online 31 August 2011

Keywords:

Isodon leucophyllus
Ent-kauranoid dimer
Epimerization
Bisleuconins A-D

Abstract

A phytochemical investigation of Isodon leucophyllus led to the isolation of four novel ent-kauranoid dimers: bisleuconins $A-D(\mathbf{1 - 4})$, and one known compound, rabdoloxin $A(5)$. It was interesting that the structures of bisleuconins $A(\mathbf{1})$ and $B(\mathbf{2})$ were elucidated as a pair of epimeric ent-kauranoid dimers with unique linkage pattern $\mathrm{C}-16 \rightarrow \mathrm{C}-17^{\prime}$ to connect two monomers. Bisleuconins $\mathrm{C}(\mathbf{3})$ and $\mathrm{D}(\mathbf{4})$ were two new asymmetric ent-kauranoid dimers. A possible biogenetic pathway of $\mathbf{1}$ and $\mathbf{2}$ was also proposed. © 2011 Elsevier Ltd. All rights reserved.

Isodon genus (formerly named Rabdosia) is an important genus in Labiatae family as it has provided many structurally diverse and bioactive diterpenoids. ${ }^{1}$ Over the past 30 years, a series of entkauranoid dimers with seven kinds of linkage pattern have been found by our group. ${ }^{2-8}$ However, the diterpenoid dimers with epimerization at $\mathrm{C}-16^{\prime}$ and connected by the unique linkage pattern (C-16 with C-17'), have never been reported.

Isodon leucophyllus (Dunn) Kudo is a small shrub mainly distributed in the western area of Sichuan Province and the north-western region of Yunnan Province, People's Republic of China. ${ }^{9}$ Previous research reported the isolation and characterization of 28 diterpenoids (C-20 nonoxygenated and 7,20-epoxy ent-kaurane), 6 flavones and one derivative of ionone. ${ }^{10-15}$ In continuation of our research for new diterpenoids with antitumor activities, we have reinvestigated the aerial parts of I. leucophyllus, collected in Shangri-La County, Yunnan Province. As a result, a pair of epimeric ent-kauranoid dimers (1 and 2) and two new asymmetric ent-kauranoid dimers ($\mathbf{3}$ and $\mathbf{4}$) along with one known compound, rabdoloxin $\mathrm{A}(5),{ }^{16}$ were isolated from this plant. Herein, we report the isolation, structure elucidation, and their cytotoxicity evaluation, as well as the hypothetically biogenetic pathway of $\mathbf{1}$ and $\mathbf{2}$.

[^0]Aerial parts of Isodon leucophyllus (Dunn) Kudo were collected and air dried in Shangri-La County of Yunnan Province in August, 2004. The plant material was identified by Professor Xi-Wen Li, and a voucher specimen was deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences. Powdered aerial parts of I. leucophyllus (1.8 kg) were extracted with 70% aq acetone ($3 \times 6 \mathrm{~L}$) at room temperature for 3 days each time. The extract was evaporated in vacuo to remove acetone, then partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The EtOAc extract (78 g) was decolored with MCI gel, and then chromatographed over a silica gel column ($650 \mathrm{~g}, 100-200$ mesh, Qingdao marine chemical factory), eluted with a gradient solvent system $\left[\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{COCH}_{3}\right.$ ($1: 0,9: 1,8: 2,7: 3,2: 1,1: 1,0: 1)$] to afford fractions $\mathrm{A}-\mathrm{G}$, monitoring by TLC (volume of each collection was 1000 mL). Fraction C (8:2, $11 \mathrm{~g})$ was submitted to CC over a RP-18 column (200 g , $40-63 \mu \mathrm{~m}$, Merck Company, $30 \% \rightarrow 100 \% \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$) to give fractions C1-C5, monitoring by TLC (volume of each collection was 250 mL). In the sixth, seventh and eighth bottles of elution solvent belonging to fraction C1, compound $5(3.1 \mathrm{~g})$ was separated as needle crystals. Fraction C2 (2.3 g) was subjected to silica gel CC (200300 mesh, 40 g) eluting with a gradient solvent system of light petroleum $-\mathrm{CH}_{3} \mathrm{COCH}_{3}$ (1:0 to $0: 1$, volume of each collection was 50 mL). Compounds $\mathbf{1}(3 \mathrm{mg})$ and $\mathbf{2}(5 \mathrm{mg})$ were isolated by semi-preparative $\operatorname{HPLC}\left(20 \% \mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}, \lambda_{\text {max }}=202 \mathrm{~nm}\right)$ from the mixture of the fourth-eighth bottles of elution solvent. Compounds $3(12 \mathrm{mg})$ and $4(26 \mathrm{mg})$ were purified from fraction F
(1:1) by reverse phase silica gel CC on RP-18, followed by semi-preparative $\mathrm{HPLC}\left(55 \% \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, \lambda_{\max }=202 \mathrm{~nm}\right.$, and $35 \% \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$, $\lambda_{\text {max }}=210 \mathrm{~nm}$, respectively.)

Compound 1 was isolated as white amorphous powder, and showed a quasi-molecular ion peak at $m / z 783.3926\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd 783.3931) in its HRESIMS, corresponding to a molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{13}$ requiring 12 degrees of unsaturation. ${ }^{17}$ The IR spectrum of 1 showed absorption bands for hydroxyl (3416 cm ${ }^{-1}$), methyl ($2931 \mathrm{~cm}^{-1}$), carbonyl (1738, $1705 \mathrm{~cm}^{-1}$) groups. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT NMR data (Table 1) showed 41 carbon resonances due to four tertiary methyls, one methoxyl, twelve methylenes (including three oxygenated ones), thirteen methines (including six oxygenated ones), and eleven quaternary carbons (including four carbonyl groups). The carbon signals of $\mathbf{1}$ mostly appeared in pairs, which showed that compound $\mathbf{1}$ could be a diterpenoid dimer.

Comparing the ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{1}$ with those of rabdoloxin A (5) (the main constituent in I. leucophyllus) revealed that the two monomers ($\mathbf{1 a}$ and $\mathbf{1 b}$, Table 1) of $\mathbf{1}$ possessed similar structure to rabdoloxin A except that the conjugated double bond in $\mathbf{5}$ disappeared in 1a and $\mathbf{1 b}$, which were replaced by one quaternary carbon ($\delta_{\mathrm{C}} 54.7$, s, C-16), two methylenes ($\delta_{\mathrm{C}} 74.3, \mathrm{t}, \mathrm{C}-17$; δ_{C} $31.2, \mathrm{t}, \mathrm{C}-17^{\prime}$), and one methine ($\delta_{\mathrm{C}} 45.9$, d, C-16'). The above assignments were established on the basis of the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of $\mathrm{H}-13^{\prime} / \mathrm{H}-16^{\prime} / \mathrm{H}-17^{\prime}$ (Fig. 1), together with the HMBC correlations of $\mathrm{H}-17 / \mathrm{C}-15, \mathrm{C}-16$; $\mathrm{H}-17^{\prime} / \mathrm{C}-15$; and $\mathrm{H}-16^{\prime} / \mathrm{C}-16$. All those key correlations suggested that the subunits $\mathbf{1 a}$ and $\mathbf{1 b}$ were connected by a single carbon-carbon bond ($\mathrm{C}-16 \rightarrow \mathrm{C}-17^{\prime}$), which was an unique linkage pattern in ent-kauranoid dimers. One methoxyl was located at C-17 as it had the HMBC correlation with C-17. ROESY experiment was applied to establish the relative stereochemistry of $\mathbf{1}$. Correlations from $\mathrm{H}-17$ to $\mathrm{H}-12 \beta$ and from $\mathrm{H}-17^{\prime}$ to $\mathrm{H}-12^{\prime} \beta$ indicated that $\mathrm{C}-17$ in $\mathbf{1 a}$ and $\mathrm{C}-17^{\prime}$ in $\mathbf{1 b}$ adopted β-orientations (Fig. 1). Correlations of $\mathrm{H}-16^{\prime} / \mathrm{H}-13^{\prime} \alpha$ and $\mathrm{H}-13 \alpha$ gave $\mathrm{H}-$ 16^{\prime} an α-orientation. Therefore, compound $\mathbf{1}$ was finally elucidated

Table 2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound 2^{a} (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \delta$ in ppm, J in Hz)

No.	2a		No.	2b	
	$\delta_{\text {H }}$	$\delta_{\text {C }}$		δ_{H}	$\delta_{\text {C }}$
1	1.35 (m, overlap)	39.9 t	1^{\prime}	1.20 (m, overlap)	39.9 t
	1.95 (m, overlap)			2.23 (m, overlap)	
2	1.43 (m)	18.3 t	2^{\prime}	1.43 (m)	18.5 t
	1.60 (m, overlap)			1.60 (m, overlap)	
3	1.32 (m, overlap)	35.4 t	3^{\prime}	1.32 (m, overlap)	35.4 t
	1.82 (m)			1.82 (m)	
4		41.5 s	4^{\prime}		41.5 s
5	1.92(m, overlap)	46.3 d	5^{\prime}	1.92 (m, overlap)	46.3 d
6	2.05-2.25 (m)	29.8 t	6^{\prime}	2.05-2.25 (m)	29.8 t
	2.45 (m)			2.45 (m)	
7	4.95 (br d)	73.4 d	$7{ }^{\prime}$	4.95 (br d)	74.3 d
8		61.3 s	8^{\prime}		60.7 s
9	2.30 (s)	69.7 d	9^{\prime}	2.32 (s)	69.7 d
10		38.4 s	10^{\prime}		38.3 s
11		208.8 s	11^{\prime}		210.0 s
12	4.60 (s)	75.2 d	12^{\prime}	4.82 (s)	78.2 d
13	3.55 (s, overlap)	51.0 d	13^{\prime}	3.08 (s, overlap)	53.7 d
14	6.31 (s)	73.8 d	14^{\prime}	6.45 (s)	73.6 d
15		221.8 s	15^{\prime}		221.7 s
16		54.6 s	16^{\prime}	2.91 (d, 6.2)	45.6 d
17	3.58 (m, overlap)	73.4 t	17^{\prime}	3.07 (m, overlap)	41.0 t
	3.69 (m, overlap)			3.75 (m, overlap)	
18	3.31 (br d)	71.2 t	18^{\prime}	3.31 (br d)	71.2 t
	3.72 (m, overlap)			3.72 (m, overlap)	
19	0.77 (s)	18.2 q	19^{\prime}	0.83 (s)	18.2 q
20	1.58 (s)	18.9 q	20^{\prime}	1.72 (s)	18.9 q
17-OMe	3.05(s)	58.2 q			

${ }^{\text {a }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{2}$ were recorded at 500 and 125 MHz .
as an asymmetric ent-kauranoid dimer, and named as bisleuconin A.

Interestingly, we also found one epimeric ent-kauranoid dimer (compound 2) of $\mathbf{1}$ in the process of isolation. Compound $\mathbf{2}$ is a

Table 1
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{1}^{\mathrm{a}}$ and $\mathbf{5}^{\mathrm{b}}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \delta$ in ppm, J in Hz)

No.	1a		No.	1b		No.	5 δ_{C}
	δ_{H}	$\delta_{\text {C }}$		$\delta_{\text {H }}$	$\delta_{\text {C }}$		
1	1.61 (m, overlap)	39.8 t	1^{\prime}	1.30 (m, overlap)	40.0 t	1	39.8 t
	1.93 (m, overlap)			2.25 (m, overlap)			
2	1.43 (m)	18.3 t	2^{\prime}	1.43 (m)	18.5 t	2	18.3 t
	1.60 (m, overlap)			1.60 (m, overlap)			
3	1.31 (m, overlap)	35.0 t	3^{\prime}	1.31 (m, overlap)	35.0 t	3	35.4 t
	1.85 (d, 12.6)			1.85 (d, 12.6)			
4		41.5 s	4^{\prime}		41.0 s	4	41.2 s
5	1.9 (m, overlap)	46.2 d	5^{\prime}	1.9 (m, overlap)	46.8 d	5	46.2 d
6	2.15 (m)	29.4 t	6^{\prime}	2.15 (m)	29.2 t	6	29.6 t
	2.43 (m)			2.43 (m)			
7	4.91 (br s)	73.9 d	$7{ }^{\prime}$	4.91 (br s)	73.8 d	7	73.3 d
8		61.1 s	8^{\prime}		59.4 s	8	60.2 s
9	2.35 (s)	69.6 d	9^{\prime}	2.30 (s)	70.4 d	9	70.2 d
10		38.4 s	$10^{\prime}$$11^{\prime}$		38.3 s	10	38.4 s
11		208.6 s			209.4 s	11	208.7 s
12	4.55 (s)	75.2 d	12^{\prime}	4.96 (s)	73.6 d	12	78.9 d
13	3.27 (s)	53.0 d	13^{\prime}	3.61 (s, overlap)	50.2 d	13	53.4 d
14	6.31 (s)	73.6 d	14^{\prime}	6.45 (s)	71.9 d	14	71.2 d
15		220.9 s	15^{\prime}		219.9 s	15	206.7 s
16		54.7 s	16^{\prime}	4.07 (m)	45.9 d	16	144.9 s
17	3.61 (AB d, overlap)	74.3 t	17^{\prime}	2.75 (m)	31.2 t	17	122.6 t
	3.82 (AB d, 7.4)			3.31 (m, overlap)			
18	3.35 (m, overlap)	71.2 t	18^{\prime}	3.35 (m, overlap)	71.2 t	18	71.2 t
	3.70 (m)			3.70 (m)			
19	0.77 (s)	18.1 q	19^{\prime}	0.83 (s)	18.2 q	19	18.2 q
20	1.58 (s)	18.9 q	20^{\prime}	1.70 (s)	19.0 q	20	18.9 q
17-OMe	2.96 (q)	57.9					

[^1]

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY : $-\mathrm{HMBC}: \mathrm{H} \frown \mathrm{C}$ ROESY: $\mathrm{H} \frown \mathrm{H}$
Figure 1. Selected ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY, HMBC and ROESY correlations of 1.

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY : — $\mathrm{HMBC}: \mathrm{H} \frown \mathrm{C}$ ROESY: $\mathrm{H} \frown \mathrm{H}$

Figure 2. Selected ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMBC and ROESY correlations of 2.

Table 3
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds 3^{a} (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \delta$ in ppm, J in Hz)

No.	3a		No.	3b	
	δ_{H}	$\delta_{\text {C }}$		$\delta_{\text {H }}$	$\delta_{\text {C }}$
1	1.30 (m, overlap)	39.7 t	1^{\prime}	1.30 (m, overlap)	39.7 t
	1.95 (m, overlap)			1.95 (m, overlap)	
2	1.40 (m, overlap)	18.5 t	2^{\prime}	1.40 (m, overlap)	18.7 t
	1.58 (m)			1.58 (m)	
3	1.32 (m, overlap)	35.1 t	3^{\prime}	1.32 (m, overlap)	35.2 t
	1.83 (m, overlap)			1.70 (m, overlap)	
4		41.4 s	4^{\prime}		41.4 s
5	1.93(m, overlap)	46.5 d	$5{ }^{\prime}$	1.87 (m, overlap)	46.8d
6	2.13 (m)	29.3 t	6^{\prime}	2.13 (m)	30.1 t
	2.45 (m)			2.32 (m)	
7	4.85 (br d)	74.3 d	$7{ }^{\prime}$	4.75 (br d)	72.8 d
8		60.8 s	8^{\prime}		54.6 s
9	2.32 (s)	71.1 d	9^{\prime}	3.06 (s)	68.0 d
10		38.3 s	10^{\prime}		38.3 s
11		211.8 s	11^{\prime}		208.7 s
12	4.42 (s)	74.1 d	12^{\prime}	4.27 (s)	74.5 d
13	3.25 (s, overlap)	52.4 d	13^{\prime}	3.55 (s, overlap)	54.1 d
14	6.45 (s)	72.6 d	14^{\prime}	6.1 (s)	74.5 d
15		215.9 s	15^{\prime}		155.1 s
16		82.1 s	16^{\prime}		108.3 s
17	1.56 (m, overlap)	25.2 t	17^{\prime}	1.42 (m, overlap)	40.5 t
	2.17 (m, overlap)			2.08 (m, overlap)	
18	3.25 (m, overlap)	71.0 t	18^{\prime}	3.25 (m, overlap)	71.2 t
	3.67 (AB, d)			3.51 (AB, d)	
19	0.78 (s)	18.0 q	19^{\prime}	0.83 (s)	18.1 q
20	1.65 (s)	18.9 q	20^{\prime}	1.69 (s)	19.2 q

${ }^{\text {a }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound 3 were recorded at 400 and 100 MHz .
white amorphous powder. Its molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{13}$ was determined by the positive HRESIMS ($\mathrm{m} / \mathrm{z} 783.3919$ ($[\mathrm{M}+\mathrm{Na}]^{+}$,
calcd 783.3931), with 12 degrees of unsaturation. ${ }^{18}$ Carefully comparing the carbon signals of $\mathbf{2}$ and $\mathbf{1}$, we found that most of two monomer's data were identical except for the obvious downfield chemical shift (about 10 ppm) of one methylene ($\mathrm{C}-17^{\prime}, \delta_{\mathrm{C}} 41.0$;) in $\mathbf{2 b}$ in comparison with the counterpart $\left(\mathrm{C}-17^{\prime}, \delta_{C} 31.2\right)$ in $\mathbf{1 b}$. This great difference implied that compound 2 might be an epimeric isomer of $\mathbf{1}$. The linkage pattern of $\mathbf{2}$ were same as $\mathbf{1}$ which was elucidated on the basis of HMBC correlations of $\mathrm{H}-16^{\prime} / \mathrm{C}-16, \mathrm{H}-$ $16^{\prime} / \mathrm{C}-12^{\prime}$, and $\mathrm{H}-13 / \mathrm{C}-17^{\prime}$ and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of $\mathrm{H}-12^{\prime} / \mathrm{H}-$ $13^{\prime} / \mathrm{H}-14^{\prime} ; \mathrm{H}-13^{\prime} / \mathrm{H}-16^{\prime} / \mathrm{H}-17^{\prime}$ (Fig. 2). The key ROESY correlations of $\mathrm{H}-16^{\prime} / \mathrm{H}-9^{\prime} \beta, \mathrm{H}-16^{\prime} / \mathrm{H}-12^{\prime} \beta, \mathrm{H}-16^{\prime} / \mathrm{H}-13, \mathrm{H}-17 / \mathrm{H}-12 \beta$, and $\mathrm{H}-17 /$ $\mathrm{H}-17^{\prime}$ established the β-orientation of $\mathrm{H}-16^{\prime}$ (Fig. 2). Thus, compound $\mathbf{2}$ was eventually determined to be an isomer of $\mathbf{1}$ epimerized at C-16', and named as bisleuconin B.

Compound 3, obtained as white amorphous powder, has the molecular formula $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{12}$ surpported by the HRESIMS of the $[\mathrm{M}+\mathrm{Na}]^{+}$ion peak at m / z (751.3672, calcd 751.3669), corresponding to 13 degrees of unsaturation. ${ }^{19}$ IR spectrum of 3 showed absorption bands for hydroxyl ($3377 \mathrm{~cm}^{-1}$), methyl ($2932 \mathrm{~cm}^{-1}$), carbonyl (1752, $1697 \mathrm{~cm}^{-1}$) groups. Compound 3 was also presumed to be an asymmetric ent-kauranoid dimer as its carbon signals exhibited the characteristics (appearing in pairs) of asymmetric ent-kauranoid dimmers like compounds $\mathbf{1}$ and $\mathbf{2}$. Detailed comparison of the ${ }^{13} \mathrm{C}$ NMR data of subunits $\mathbf{3 a}$ and $\mathbf{3 b}$ with those of $\mathbf{5}$ (Table 3), we found that they resembled each other except for the absence of two exo-methylenes conjugated with cyclopentanone in 5 . The presence of tetrasubstituted double bond [$\delta_{\mathrm{C}} 155.1$ (s, C-15'), 108.3 (s, C-16')], two additional methylenes [$\delta_{\mathrm{C}} 24.8$ ($\mathrm{t}, \mathrm{C}-17$), 39.7 ($\mathrm{t}, \mathrm{C}-17^{\prime}$)] and an abnormal oxygenated quaternary carbon [$\delta_{\mathrm{C}} 82.1$ (s, C-16)], combining with the 13 degrees of unsaturation of compound $\mathbf{3}$, suggested that it was an asymmetric dimmer linked by a six-membered dihydropyran ring

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY $:-\mathrm{HMBC}: \mathrm{H} \leftrightharpoons \mathrm{C} \quad$ ROESY $: \mathrm{H} \leftrightharpoons \mathrm{H}$

Figure 3. Selected ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMBC and ROESY correlations of 3.

Table 4
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compounds $\mathbf{4}^{\mathrm{a}}$ (in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, \delta$ in ppm, J in Hz)

No.	4a		No.	4b	
	$\delta_{\text {H }}$	$\delta_{\text {c }}$		δ_{H}	$\delta_{\text {c }}$
1	1.13 (m, overlap)	39.6 t	1^{\prime}	1.30 (m, overlap)	39.7 t
	2.05 (m, overlap)			1.91 (m, overlap)	
2	1.41 (br d)	18.2 t	2^{\prime}	1.32 (m, overlap)	18.9 t
	1.58 (m)			1.69 (m, overlap)	
3	1.31 (m, overlap)	35.5 t	3^{\prime}	1.12 (m, overlap)	41.9 t
	1.80 (m)			1.32 (m, overlap)	
4		40.9 s	4^{\prime}		33.7 s
5	1.91(m, overlap)	46.7 d	5^{\prime}	1.02 (d, 11.6)	53.7 d
6	2.13 (m, overlap)	29.7 t	6^{\prime}	1.91 (t)	30.7 t
	2.43 (m, overlap)			2.17 (t)	
7	4.86 (br d)	74.1 d	$7{ }^{\prime}$	4.17 (br d)	78.7 d
8		60.4 s	$8{ }^{\prime}$		56.7 s
9	2.30 (s)	70.2 d	9^{\prime}	1.69 (s, overlap)	64.1 d
10		38.3 s	10^{\prime}		38.7 s
11		209.0 s	11^{\prime}	4.30 (s)	73.6 d
12	4.43 (s)	74.1 d	12^{\prime}	4.52 (s)	75.2 d
13	3.32 (br d)	47.8 d	13^{\prime}	3.13 (s)	59.9 d
14	6.34 (s)	71.7 d	14^{\prime}	5.56 (s)	76.9 d
15		220 s	15^{\prime}	5.77 (s)	133.4 d
16	3.68 (m)	48.0 d	16^{\prime}		143.1 s
17	1.71 (m)	23.7 t	17^{\prime}	2.43 (m, overlap)	29.2 t
	2.43 (m, overlap)			2.52 (m, overlap)	
18	3.28 (AB, d, 2.7)	71.2 t	18^{\prime}	1.31 (m, overlap)	33.5 t
	3.64 (AB, d, 2.7)			1.80 (m)	
19	0.83 (s, overlap)	18.1 q	19^{\prime}	0.77 (s)	21.9 q
20	1.69 (s)	18.9 q	20^{\prime}	1.47 (s)	17.2 q

[^2]like bisrubescensin C. ${ }^{3}$ This deduction was confirmed by a series of key HMBC correlations of $\mathrm{H}-17^{\prime}$ with $\mathrm{C}-16, \mathrm{C}-15^{\prime}$, and $\mathrm{C}-16^{\prime}$; H-17 with $\mathrm{C}-15$ and $\mathrm{C}-16^{\prime}$; and of $\mathrm{H}-13$ with $\mathrm{C}-11$ and $\mathrm{C}-15$. And ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations of $\mathrm{H}-12^{\prime} / \mathrm{H}-13^{\prime} / \mathrm{H}-14^{\prime}, \mathrm{H}-12 / \mathrm{H}-13 / \mathrm{H}-14$, and $\mathrm{H}_{2}-17 / \mathrm{H}_{2}-17^{\prime}$ further proved the above conclusion (Fig. 3). The stereochemistry of compound $\mathbf{3}$ was established on the basis of ROESY correlations of $\mathrm{H}-17$ with $\mathrm{H}-12 \beta$ and $\mathrm{H}-17^{\prime}$ with $\mathrm{H}-$ $13^{\prime} \alpha$, which indicated that the single carbon bond ($\mathrm{C}-16 \rightarrow \mathrm{C}-17$) adopted β-orientation in subunit 3a (Fig. 3). Subsequently, the structure of compound $\mathbf{3}$ was elucidated as shown in Figure 3, and named as bisleuconin C.

Compound $\mathbf{4}$ was also an asymmetric ent-kauranoid dimmer, isolated as white amorphous powder, having the molecular formula $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{10}$ supported by HRESIMS of the $[\mathrm{M}+\mathrm{Na}]^{+}$ion peak at $m / z 723.4093\left([\mathrm{M}+\mathrm{Na}]^{+}\right.$, calcd 723.4084$)$ with 11 degree of unsaturation. ${ }^{20}$ The IR spectrum of 4 showed absorption bands for hydroxyl ($3424 \mathrm{~cm}^{-1}$), methyl ($2928 \mathrm{~cm}^{-1}$), carbonyl (1736, $1704 \mathrm{~cm}^{-1}$) groups. Carefully comparing the chemical shifts of carbon signals of subunits $\mathbf{4 a}$ and $\mathbf{4 b}$ with those of $\mathbf{5}$ (Table 4), we found that most of the data of $\mathbf{4 a}$ were identical to those of $\mathbf{5}$, but $\mathbf{4 b}$ was one C-19,20-non-oxygenated-ent-kaurane diterpenoid. The absence of two exo-methylenes conjugated with cyclopentanone in $\mathbf{4 a}$ and $\mathbf{4 b}$, one trisubstituted double bond [$\delta_{\mathrm{C}} 143.1$ (s, C-16'), 133.4 (d, C-15')], two additional methylenes [$\delta_{\mathrm{C}} 23.7$ (t, C-17), 29.2 (t, C-17')], and one methine [$\delta_{\mathrm{C}} 48.0$ (d, C $16)$], along with the query of 11 degrees of unsaturation, suggested that compound 4 was an asymmetric dimmer linked by a single carbon bond ($\mathrm{C}-17 \rightarrow \mathrm{C}-17^{\prime}$) like bisrubescensin B. ${ }^{3}$ This linkage pattern was confirmed by the HMBC spectrum: $\mathrm{H}-17^{\prime}$ correlated to $\mathrm{C}-16, \mathrm{C}-13^{\prime}, \mathrm{C}-15^{\prime}$, and $\mathrm{C}-16^{\prime} ; \mathrm{H}-16$ correlated to $\mathrm{C}-13, \mathrm{C}-17$, and $\mathrm{C}-17$. The ${ }^{1} \mathrm{H}^{1} \mathrm{HCOSY}$ correlations of $\mathrm{H}-13 / \mathrm{H}-$ 16, $\mathrm{H}-16 / \mathrm{H}_{2}-17$, and $\mathrm{H}_{2}-17 / \mathrm{H}_{2}-17^{\prime}$ further confirmed the above

${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY $:-\mathrm{HMBC}: \mathrm{H} \leftrightharpoons \mathrm{C}$ ROESY: $\mathrm{H} \leftrightharpoons \mathrm{H}$

Scheme 1. Proposed biogenetic pathway for Compounds $\mathbf{1}$ and 2.
deduction. The ROESY correlations of $\mathrm{H}-16 / \mathrm{H}-13 \alpha$ and $\mathrm{H}-16 / \mathrm{H}-$ 17 suggested that $\mathrm{H}-16$ was α-oriented in subunit 4a. Similarly, $\mathrm{H}-7^{\prime}, \mathrm{H}-11^{\prime}$, and $\mathrm{H}-12^{\prime}$ in subunit $\mathbf{4 b}$ were determined to be β, α, and α-orientation, respectively according to the ROESY correlations of $\mathrm{H}-7^{\prime} / \mathrm{H}-5^{\prime} \beta, \mathrm{H}-11^{\prime} / \mathrm{H}-1^{\prime} \alpha, \mathrm{H}-11^{\prime} / \mathrm{H}-20^{\prime} \alpha, \mathrm{H}-12^{\prime} / \mathrm{H}-13^{\prime} \alpha$, and $\mathrm{H}-12^{\prime} / \mathrm{H}-11^{\prime}$. Therefore, the structure of compound 4 was elucidated as shown in Figure 4, and it was named as bisleuconin D.

Bisleuconins A and B (1 and 2) were the first example of epimeric ent-kaurane diterpenoid dimers (epimerized at $\mathrm{C}-16^{\prime}$) with the unique linkage pattern from $\mathrm{C}-16$ to $\mathrm{C}-17^{\prime}$. A plausible biosynthetic pathway for $\mathbf{1}$ and 2 was proposed as shown in Scheme 1. Compound 5 was oxidized at C-17 and got methylated successively to form the monomer a. Then, a Michael addition reaction conducted by providing $\mathrm{C}-16$ in monomer a to attack $\mathrm{C}-17^{\prime}$ in another 5 to form single carbon bond $\mathrm{C}-16 \rightarrow \mathrm{C}$ 17^{\prime}. Finally, the epimerization occurred when the carbon anion located at $\mathrm{C}-16^{\prime}$ got one proton from water and resulted in the forming dimmers 1 and 2.

Compound 1-4 were evaluated for their cytotoxicity against three human tumor cell lines (HT-29, BEL-7402 and SK-OV-3), using the sulforhodamine B (SRB) method, as reported previously. ${ }^{21}$ All of the dimers were inactive with IC_{50} values of $>100 \mu \mathrm{M}$.

Acknowledgements

This work was supported financially by the NSFC-Joint Foundation of Yunnan Province (No. U0832602 to H.-D.S), the Major State Basic Research Development Program of China (No. 2009CB522300 and 2009CB940900), the Science and Technology Program of Yunnan Province (Nos. 2008IF010 and 2008CD162), the NSFC (No. 30830119 to S.-J.C.), and the Major Direction Projection Foundation of CAS Intellectual Innovation Project (No. 2010KIBA05 to J.-X.P.).

Supplementary data

Supplementary data (experimental details and MS, ESIMS, 1D, and 2D NMR spectra of bisleuconins A-D) associated with this article can be found, in the online version, at doi:10.1016/ j.tetlet.2011.08.133.

References and notes

1. Sun, H. D.; Xu, Y. L.; Jiang, B. Diterpenoids from Isodon Species; Science Press: Beijing, China, 2001.
2. Sun, H. D.; Huang, S. X.; Han, Q. B. Nat. Prod. Rep. 2006, 23, 673-698.
3. Huang, S. X.; Xiao, W. L.; Li, L. M.; Li, S. H.; Zhou, Y.; Ding, L. S.; Lou, L. G.; Sun, H. D. Org. Lett. 2006, 8, 1157-1160.
4. Huang, S. X.; Pu, J. X.; Xiao, W. L.; Li, L. M.; Weng, Z. Y.; Zhou, Y.; Han, Q. B.; Peng, S. L.; Ding, L. S.; Lou, L. G.; Sun, H. D. Phytochemistry 2007, 68, 616-622.
5. Yang, L. B.; Yang, J.; Li, L. M.; Lei, C.; Zhao, Y.; Xiao, W. L.; Huang, S. X.; Han, Q. B.; Pu, J. X.; Sun, H. D. Tetrahedron Lett. 2008, 49, 3574-3577.
6. Han, Q. B.; Lu, Y.; Wu, L.; He, Z. D.; Qiao, C. F.; Xu, H. X.; Zheng, Q. T.; Sun, H. D. Tetrahedron Lett. 2005, 46, 5373-5375.
7. Sun, H. D.; Qiu, S. X.; Lin, L. Z.; Zhang, R. P.; Zhou, Y.; Zheng, Q. T.; Johnson, M. E.; Fong, H. H. S.; Farnsworth, N. R.; Cordell, G. A. J. Nat. Prod. 1997, 60, 203-206.
8. Zhao, Y.; Huang, S. X.; Xiao, W. L.; Ding, L. S.; Pu, J. X.; Li, X.; Yang, L. B.; Sun, H. D. Tetrahedron Lett. 2009, 50, 2019-2023.
9. Wu, Z. Y.; Li, X.; Xuan, S. J., et al In Flora Republicae Popularis Sinicae; Science Publishing House: Beijing, 1977; Vol. 66,
10. Liao, X.; Peng, S. L.; Ding, L. S., et al Acta Bot. Sinica 1997, 39, 1073-1077.
11. Liao, X.; Ding, L. S.; Peng, S. L., et al Phytochemistry 1998, 47, 247-250.
12. Chen, S. N.; Lin, Z. W.; Qin, G. W.; Sun, H. D. Planta Medica. 1999, 65, 472-474.
13. Zhao, A. H.; Xiang, W.; Na, Z.; Wang, Z. Y.; Qin, G. W.; Sun, H. D. J. Asian Nat. Prod. R. 2004, 6, 145-150.
14. Zhao, A. H.; Peng, L. Y.; Wang, Z. Y.; Sun, H. D. Acta Bot. Yunnanica 2010, 5, 1873-1876.
15. Zhang, H. B.; Pu, J. X.; Zhao, Y.; He, F.; Zhao, W.; Lou, L. G.; Xiao, W. L.; Sun, H. D. Nat. Prod. Commun. 2010, 5, 1873-1876.
16. Sun, H. D.; Lin, Z. W.; Shen, X. Y.; Takeda, Y.; Fujita, T. Phytochemistry 1991, 30, 603-606.
17. Bisleuconin A (1): white amorphous powder; $[\alpha]_{D}^{22.5}+27.62(c 0.00156 \mathrm{~g} / \mathrm{ml}$, MeOH); UV (MeOH) $\lambda_{\text {max }}=203.2 \mathrm{~nm}$, ($\log \varepsilon=3.70$); IR (KBr) cm ${ }^{-1}$: 3416.4 2931.3, 2875.4, 1737.9, 1705.7, 1639.2; ESI MS: m/z 783 ([M+Na] ${ }^{+}$); HR-ESI MS: $\mathrm{m} / z 783.3926\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, corresponding to a molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{13} \mathrm{Na}$ (calcd 783.3931), for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, see Table 1.
18. Bisleuconin B (2):white amorphous powder; $[\alpha]_{\mathrm{D}}^{22.5}+13.16(c 0.00152 \mathrm{~g} / \mathrm{ml}$, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }=203.2 \mathrm{~nm}$, $(\log \varepsilon=3.71)$; IR (KBr$) \mathrm{cm}^{-1}: 3395.6$, 2928.8, 2872.9, 1727.8, 1689.8, 1641.1; ESI MS: m/z 783 ([M+Na] ${ }^{+}$); HR-ESI MS: $\mathrm{m} / z 783.3919\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, corresponding to a molecular formula $\mathrm{C}_{41} \mathrm{H}_{60} \mathrm{O}_{13} \mathrm{Na}$ (calcd 783.3931), for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, see Table 2.
19. Bisleuconin $\mathrm{C}(\mathbf{3})$: white amorphous powder; $[\alpha]_{\mathrm{D}}^{17.4}-1.94(c 0.00258 \mathrm{~g} / \mathrm{ml}$, $\mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }=202.2 \mathrm{~nm}$, ($\log \varepsilon=4.03$); IR (KBr) cm ${ }^{-1}: 3377.5$, 2932.5, 2875.1, 1752.3, 1697.1, 1639.7; ESI MS: m/z 751 ([M+Na] ${ }^{+}$); HR-ESI MS: $\mathrm{m} / \mathrm{z} 751.3672\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, corresponding to a molecular formula $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{O}_{12} \mathrm{Na}$ (calcd 751.3669), for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, see Table 3.
20. Bisleuconin $\mathrm{D}(4)$: white amorphous powder; $[\alpha]_{\mathrm{D}}^{16.2}-17.55(c 0.00229 \mathrm{~g} / \mathrm{ml}$, $\mathrm{MeOH}) ; U V(\mathrm{MeOH}) \lambda_{\max }=204.0 \mathrm{~nm}$, $(\log \varepsilon=3.78)$; IR $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3423.7$, 2928.3, 2872.1, 1736.2, 1704.7, 1636.7; ESI MS: $m / z 723\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$; HR-ESI MS: $\mathrm{m} / z 723.4093\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, corresponding to a molecular formula $\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{Na}$ (calcd 723.4084), for ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, see Table 4.
21. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R. J. Natl. Cancer Inst. 1991, 83, 757-766. HT-29 = human colon cancer; BEL-7402 = human liver cancer; SK-OV-3 = human ovarian cancer cell lines.

[^0]: * Corresponding authors. Tel.: 868715223251 ; fax: 868715216343.

 E-mail addresses: pujianxin@mail.kib.ac.cn (J.-X. Pu), hdsun@mail.kib.ac.cn (H.-D. Sun).

[^1]: ${ }^{\text {a }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound 1 were recorded at 500 and 125 MHz .
 b ${ }^{13} \mathrm{C}$ NMR data of compound 5 were recorded at 125 MHz .

[^2]: ${ }^{\text {a }}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound 4 were recorded at 400 and 100 MHz .

