
ELSEVIER

Contents lists available at ScienceDirect

Steroids

journal homepage: www.elsevier.com/locate/steroids

Taccasubosides A-D, four new steroidal glycosides from Tacca subflabellata

Lei Li^{a,b}, Wei Ni^a, Xing-Rao Li^a, Yan Hua^b, Ping-Lei Fang^a, Ling-Mei Kong^a, Li-Li Pan^a, Yan Li^a, Chang-Xiang Chen^a, Hai-Yang Liu^{a,*}

a State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China

ARTICLE INFO

Article history:
Received 13 December 2010
Received in revised form 1 April 2011
Accepted 4 April 2011
Available online 14 April 2011

Keywords: Tacca subflabellata Taccaceae Taccasubosides A-D Cytotoxic activity

ABSTRACT

By analyzing the steroidal content of fresh whole plants of *Tacca subflabellata* (Taccaceae), we isolated one sapogenin and eight glycosides with four kinds of steroidal skeletons including four new glycosides, named taccasubosides A–D (**1–4**), together with five known compounds. Among them, compound **1** is the first pentacyclic sterol glycoside with 6–6–6–5–6 fused rings. The structures of **1–4** were elucidated on the basis of extensive spectroscopic analysis, including that of 2D NMR data, and the results of acidic hydrolysis. The cytotoxicity of the selected steroidal glycosides (**1–4**, **8**, and **9**) was evaluated *in vitro* against five human cancer cell lines. Compound **9** showed significant inhibitory activity against all five cell lines.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The genus *Tacca* (Taccaceae) comprising *ca.* 30 species distributes in tropical regions [1]. In China, there are five species and three of them have been long used as folk medicine for treatment of gastric ulcer, toothache and stomachache, incised wounds [2]. Anthocyanins [3], diarylheptanoids and diarylheptanoid glycosides [4], benzoquinone-type *retro*-dihydrochalcone [5], steroidal sapogenins and steroidal glycosides such as C-27 steroidal saponins, C-28 sterol glycosides and withanolide glycosides [6–15], have been isolated from *Tacca plantaginea*, *Tacca chantrieri*, *Tacca paxiana*, *Tacca subflabellata*, *Tacca leontopetaloides*, and *Tacca aspera*. Perhaps the most unique and well-studied class of compounds isolated from genus *Tacca* are the appropriately named taccalonolides [16–23], which are specially pentacyclic steroidal compounds with microtubule-stabilizing properties and antitumor activity [24,25].

In our continuing searching for new steroids from this genus, we investigated the chemical constituents of *T. subflabellata* collected in Hekou County of Yunnan Province, and isolated one new pentacyclic sterol glycoside, two new spirostanol glycosides, and a new pregnane glycoside, named taccasubosides A–D (1–4), together with five known steroidal compounds (5–9). To the best

E-mail address: haiyangliu@mail.kib.ac.cn (H.-Y. Liu).

of our knowledge, compound 1 is the first pentacyclic sterol glycoside with 6–6–6–5–6 fused rings. Compounds 1–4, 8, and 9 were subjected to cytotoxic activity testing against five human cancer cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480). This paper deals with the isolation and structural elucidation of these new steroidal glycosides, the cytotoxic activity of the glycosides tested.

2. Experimental

2.1. General methods

Optical rotations were measured in a JASCO P-1020 digital polarimeter. UV spectra were measured using a Shimadzu UV-2401 PC spectrophotometer. IR spectra were obtained on Bio-Rad FTS-135 infrared spectrophotometer with KBr pellets. FAB mass spectrum was obtained on a VG Auto spec-3000 spectrometer and ESI-MS, high-resolution ESI mass spectrum was recorded on an API Qstar Pulsar instrument. NMR experiments were performed on Bruker AM-400, DRX-500, and Bruker Avance III 600 instruments with TMS as the internal standard. Chemical shifts (δ) were expressed in ppm with reference to the solvent signals. Column chromatography (CC) was performed over silica gel (200-300 mesh, 10-40 µm, Qingdao Marine Chemical Co., China), Rp-18 (40–63 μm, Merck), and Sephadex LH-20 (GE Healthcare, Sweden). TLC was performed on HSGF254 (0.2 mm, Qingdao Marine Chemical Co., China) or RP-18 F₂₅₄ (0.25 mm, Merck). Fractions were monitored by TLC and spots were visualized by heating silica gel plates sprayed with 10% H₂SO₄ in EtOH. GC analysis was performed on a

^b Faculty of Natural Resources, Southwest Forestry University, Kunming 650224, PR China

^{*} Corresponding author at: Chinese Academy of Sciences, Kunming Institute of Botany, State Key Laboratory of Phytochemistry and Plant Resources in West China, No. 132, Lanhei Road, Kunming 650204, Yunnan, PR China. Tel.: +86 871 522 3246; fax: +86 871 522 3245.

Table 1 ¹H NMR spectroscopic data of compounds **1–4** (δ in ppm, J in Hz, C_5D_5N).^a

Position	1 ^a	2 ^a	3 ^b	4 ^a
1	3.51 m	0.99 m, 1.71 m	0.92 m, 1.69 m	0.89 m, 1.65 m
2	3.85 dd (4.1, 4.6)	1.64 m, 1.97 m	1.83 m, 2.07 m	1.82 m, 2.05 m
3	3.54 br d (3.3)	3.64 m	3.90 m	3.88 m
4	2.91 m,	2.31 t (12.3),	2.66 t (11.8),	2.69 d (9.3)
	2.23 d (15.4)	2.48 dd (3.0, 12.8)	2.73 dd (3.8, 13.4)	2.73 dd (4.7, 12.9)
5	1.68 m	, , ,	, , ,	• • •
6		5.25 d (4.2)	5.28 d (4.6)	5.31 d (4.5)
7	4.52 br s	1.55 m, 1.88 m	1.54m, 1.86 m	1.55 m, 1.87 m
8	3.17 t (12.3)	1.89 m	1.54 m	1.28 m
9	1.70 m	1.64 m	0.88 m	0.93 m
11	4.95 m	1.55 m, 1.80 m	1.39 m (2H)	1.48 m (2H)
12	5.01 m	3.98 br s	1.12 m, 1.72 m	1.36 m, 2.60 d (11.9)
14	2.44 m	2.08 m	1.09 m	1.30 m
15	1.85 m, 1.76 m	1.57 m, 2.09 m	1.51 m, 2.09 m	1.89 m, 2.13 m
16	2.90 m	4.59 m	4.69 m	6.58 br s
17	1.29 t (12.0)	3.05 dd (7.6, 8.0)	1.93 t (7.7)	0.50 51 5
18	1.16 s	0.93 s	1.02 s	0.91 s
19	1.59 s	0.95 s	0.97 s	1.02 s
20	1.35 s 1.47 m	1.98 t (6.9)	3.10 dq (7.0, 13.6)	1.02 3
21	0.74 d (6.2)	1.17 d (6.9)	1.23 d (7.0)	2.23 s
22	2.47 m, 1.35 m	1.17 d (0.5)	1.23 (7.0)	2.23 3
23	5.04 d (5.2)	1.70 m (2H)	4.60 (dd, 4.4, 12.0)	
24	5.04 ti (5.2)	1.61 m (2H)	2.28 t (12.0), 2.47 m	
25	1.20 s	1.56 m	2.20 t (12.0), 2.47 III	
26	1.20 3	3.49 t (10.2),	3.71 d (11.0),	
20		3.49 t (10.2), 3.57 d (12.7)	3.71 d (11.0), 3.94 d (11.0)	
27		0.67 d (4.8)	1.27 s	
OAc-12	2.03 s	0.07 d (4.8)	1.27 3	
OAC-12 OAc-23	2.03 s 1.87 s			
1'	4.97 d (7.8)	5.66 d (3.0)	4.90 d (7.8)	4.89 d (7.8)
2′	4.97 d (7.8) 4.04m	4.65 d (3.0)	4.90 ti (7.8) 4.06 m	4.05 m
2′ 3′	4.04m 4.27m	4.63 d (3.0)		
<i>4</i> ′	4.27III 4.25 m	4.26.4 (0.4)	4.18 dd (9.0, 9.1) 4.07 m	4.17 dd (9.0, 9.0) 4.05 m
4	4,25 111	4.26 d (9.4),	4,07 111	4.05 111
5′	4.00	4.53 d (9.4)	3.70	2.70
3	4.00 m	4.07 d (10.3),	3.79 m	3.78 m
C	450 44 (1.0.11.6)	4.43 d (10.3)	424 444 4 (114)	4244(100) 4444(100)
6′	4.58 dd (1.9, 11.6),		4.34 m, 4.44 d (11.4)	4.34 d (10.9), 4.44 d (10.9)
1//	4.40 dd (5.3, 11.7)	5 20 km -	5 07 h	5 00 h
1"		5.29 br s	5.87 br s	5.88 br s
2"		3.91 dd (2.7, 9.8)	4.85 br s	4.86 m
3"		4.61 t (2.8)	4.52 dd (2.6, 9.1)	4.53 dd (3.3, 9.6)
4''		3.62 m	4.32 dd (8.5, 9.5)	4.31 m
5"		4.24 m	4.87 m	4.87 m
6′′		1.54 d (6.2)	1.74 d (6.2)	1.74 d (6.1)
1'''			5.77 br s	5.77 br s
2′′′			4.75 br s	4.78 m
3′′′			4.49 dd (2.8, 9.3)	4.49 dd (3.3, 9.3)
4′′′			4.32 dd (8.5, 9.5)	4.31 m
5′′′			4.80 dq (6.1, 9.4)	4.81 dq (6.4, 9.4)
6'''			1.65 d (6.1)	1.64 d (6.1)

^a Recorded at 400 MHz.

Shimadzu GC-2010 gas chromatograph equipped with an ${\rm H}_2$ flame ionization detector.

2.2. Plant material

The fresh whole plants of *T. subflabellata* were collected in August 2009 from Hekou County, Yunnan Province, People's Republic of China, and identified by Professor Qin Li, Honghe Institute of Tropical Agricultural Science. A voucher specimen (No. HY0005) was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China.

2.3. Extraction and isolation

The fresh and chopped plant material (3.2 kg) was percolated four times (4 days per time) with 80% EtOH (4 \times 10 L) at room temperature to give the crude extract (116 g). This was partitioned between EtOAc and water to afford EtOAc-soluble

portion (72g). The fraction of water was passed through D-101 macroporous resin and eluted successively with H₂O and 70% EtOH. Vaporated 70% EtOH eluate gave H2O-soluble portion (10g). The EtOAc-soluble portion (72g) was passed through a MCI gel column chromatography eluted with aqueous EtOH in gradient (50% \rightarrow 80% \rightarrow 95%, v/v) to obtain four fractions 1–4 (as monitored by TLC). Fraction 2 was purified by using a reversed-phase C-18 silica gel column (aqueous MeOH, 70%) to give 1 (15 mg), chantriolide A (18 mg), and chantriolide B (14 mg). Fraction 3 was chromatographed on Sephadex LH-20 (CHCl3-MeOH 1:1) and finally purified by a silica gel column (CHCl₃-MeOH 20:1) to obtain plantagiolide A (16 mg). The H₂Osoluble portion was chromatographed over a silica gel column $(CHCl_3-MeOH-H_2O \ 10:1:0 \rightarrow 8:2:0.2, \ v/v)$ to give two major components subfractions. The two subfractions were repeatedly chromatographed on Rp-18 columns (MeOH- $H_2O5:5 \rightarrow 8:2 \rightarrow 7:3$, v/v) to yield **2** (12 mg), **3** (21 mg), **4** (20 mg), **8** (25 mg), and **9** (100 mg).

b Recorded at 500 MHz.

Table 2 13 C NMR spectroscopic data of compounds **1–4** (δ in ppm, C_5D_5N).

1 86.5 (d) 37.4 (t) 37.5 (t) 37.3 (t) 2 55.0 (d) 30.3 (t) 30.1 (t) 30.0 (t) 3 51.2 (d) 77.6 (d) 77.9 (d) 77.7 (d) 4 30.0 (t) 39.3 (t) 38.7 (t) 38.7 (t) 5 44.1 (d) 141.0 (s) 140.8 (s) 141.2 (s) 6 209.7 (s) 122.0 (d) 121.8 (d) 121.6 (d) 7 79.2 (d) 31.9 (t) 32.4 (t) 31.8 (t) 8 43.3 (d) 32.0 (d) 31.6 (d) 30.3 (d) 9 57.6 (d) 444.4 (d) 50.3 (d) 50.7 (d) 10 42.9 (s) 36.9 (s) 37.2 (s) 37.1 (s) 11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.4 (t) 32.3 (t) 16 37.	Position	1 ^a	2 ^a	3 b	4 ^a
3 51.2 (d) 77.6 (d) 77.9 (d) 77.7 (d) 4 30.0 (t) 39.3 (t) 38.7 (t) 38.7 (t) 5 44.1 (d) 141.0 (s) 140.8 (s) 141.2 (s) 6 209.7 (s) 122.0 (d) 121.8 (d) 121.6 (d) 7 79.2 (d) 31.9 (t) 32.4 (t) 31.8 (t) 8 43.3 (d) 32.0 (d) 31.6 (d) 30.3 (d) 9 57.6 (d) 44.4 (d) 50.3 (d) 50.7 (d) 10 42.9 (s) 36.9 (s) 37.2 (s) 37.1 (s) 11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17	1	86.5 (d)	37.4(t)	37.5 (t)	37.3 (t)
4 30.0 (t) 39.3 (t) 38.7 (t) 38.7 (t) 5 44.1 (d) 141.0 (s) 140.8 (s) 141.2 (s) 6 209.7 (s) 122.0 (d) 121.8 (d) 121.6 (d) 7 79.2 (d) 31.9 (t) 32.4 (t) 31.8 (t) 32.4 (t) 31.8 (t) 9 57.6 (d) 44.4 (d) 50.3 (d) 50.7 (d) 10 42.9 (s) 36.9 (s) 37.2 (s) 37.1 (s) 11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 12.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 6 66.9 (t) 69.3 (t) 17.3 (q) 26.9 (q) 00.4 (s) 17.9 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.7 (d) 78.7 (d) 78.8 (d) 78.7 (d) 78.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.7 (d) 78.7 (d) 78.8 (d) 72.5 (2	55.0 (d)	30.3 (t)	30.1 (t)	30.0(t)
5 44.1 (d) 141.0 (s) 140.8 (s) 141.2 (s) 6 209.7 (s) 122.0 (d) 121.8 (d) 121.6 (d) 7 79.2 (d) 31.9 (t) 32.4 (t) 31.8 (t) 8 43.3 (d) 32.0 (d) 31.6 (d) 30.3 (d) 9 57.6 (d) 44.4 (d) 50.3 (d) 50.7 (d) 10 42.9 (s) 36.9 (s) 37.2 (s) 37.1 (s) 11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 20 <	3	51.2 (d)	77.6 (d)	77.9 (d)	77.7 (d)
6	4	30.0 (t)	39.3 (t)	38.7 (t)	38.7 (t)
7	5	44.1 (d)	141.0(s)	140.8 (s)	141.2 (s)
8	6	209.7 (s)	122.0 (d)	121.8 (d)	121.6 (d)
9 57.6 (d) 44.4 (d) 50.3 (d) 50.7 (d) 10 42.9 (s) 36.9 (s) 37.2 (s) 37.1 (s) 11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 17.3 (q) 26.9 (q) 70.4 (d) 70.5 (d)	7	79.2 (d)	31.9(t)	32.4(t)	31.8 (t)
10	8	43.3 (d)	32.0 (d)	31.6 (d)	30.3 (d)
11 71.3 (d) 29.4 (t) 21.1 (t) 20.9 (t) 12 75.5 (d) 71.4 (d) 40.2 (t) 35.1 (t) 13 44.6 (s) 45.1 (s) 41.1 (s) 46.3 (s) 14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 75.8 (d)	9	57.6 (d)	44.4 (d)	50.3 (d)	50.7 (d)
12	10	42.9 (s)	36.9 (s)	37.2 (s)	37.1 (s)
13	11	71.3 (d)	29.4 (t)	21.1 (t)	20.9(t)
14 47.6 (d) 48.3 (d) 56.7 (d) 56.4 (d) 15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.3 (s), 21.0 (q) 17.5 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' <		75.5 (d)	71.4 (d)	40.2 (t)	35.1 (t)
15 26.1 (t) 32.4 (t) 32.3 (t) 32.3 (t) 16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.0 (s), 21.0 (q) 17.3 (q) 26.9 (q) OAc-12 170.3 (s), 20.4 (q) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.4 (d)		44.6 (s)	, ,	41.1 (s)	46.3 (s)
16 37.8 (d) 81.1 (d) 81.9 (d) 144.8 (d) 17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.3 (s), 20.4 (q) 70.0 (s) 26.9 (q) OAc-12 170.3 (s), 20.4 (q) 71.3 (q) 26.9 (q) OAc-23 170.0 (s), 21.0 (q) 17.5 (d) 78.4 (d) 78.4 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d)					
17 54.1 (d) 53.9 (d) 62.6 (d) 155.2 (s) 18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.3 (s), 20.4 (q) 26.9 (q) OAc-12 170.3 (s), 20.4 (q) OAc-23 170.0 (s), 21.0 (q) 11* 1' 106.6 (d) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (
18 14.8 (q) 17.5 (q) 16.6 (q) 15.9 (q) 19 16.7 (q) 19.4 (q) 19.4 (q) 19.3 (q) 20 31.4 (d) 42.3 (d) 35.8 (d) 196.3 (s) 21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.3 (s), 20.4 (q) 70.0 (s) OAc-12 170.3 (s), 21.0 (q) 71.7 (d) 78.4 (d) 78.4 (d) 78.4 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 3"		, ,			, ,
19		, ,	, ,	, ,	, ,
20		, .,		1 47	1 47
21 20.0 (q) 15.1 (q) 14.9 (q) 27.1 (q) 22 45.0 (t) 109.4 (s) 112.2 (s) 23 73.0 (d) 32.4 (t) 64.6 (d) 24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.0 (s), 20.4 (q) 26.9 (q) OAc-12 170.0 (s), 21.0 (q) 17.3 (q) 26.9 (q) 1' 106.6 (d) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.4 (d) 78.3 (d) 47.3 (d) 47.3 (d) 47.3 (d) 47.2 (d) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 62.2 (t) 62.2 (t) 62.2 (t) 62.2 (t) 62.3 (t) 62.2 (t) 62.2 (t) 62.3 (t) 62.2 (t) 102.7 (d) 72.5 (d		, .,	·	1 47	1 47
22		• •	, ,	, ,	, ,
23				,	27.1 (q)
24 81.3 (s) 29.4 (t) 43.6 (t) 25 15.7 (q) 30.7 (d) 70.0 (s) 26 66.9 (t) 69.3 (t) 27 170.3 (s), 20.4 (q) OAc-12 170.0 (s), 21.0 (q) 1' 106.6 (d) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 103.9 (d) 103.9 (d) 72.7 (d) 72.7 (d) 72.7 (d) 72.7 (d) 72.7 (d) 72.7 (d) 73.6 (d) 73.6 (d) 5" 70.7 (d) 70.6 (d) 6" 18.5 (q) 18.5 (q)				, ,	
25		` '	` '	` ,	
26			, ,	, ,	
27 OAc-12		15.7 (q)	, ,	, ,	
OAc-12 170.3 (s), 20.4 (q) OAc-23 170.0 (s), 21.0 (q) 1' 106.6 (d) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.5 (d) 72.5 (d) 3"" 73.6 (d) 73.6 (d) 5"" 73.6 (d) 73.6 (d) 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)			, ,	, ,	
OAc-23			17.3 (q)	26.9 (q)	
1' 106.6 (d) 108.2 (d) 99.9 (d) 99.8 (d) 2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 59.9 (d) 69.9 (d) 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 72.6 (d) 72.7 (d) 72.7 (d) 72.7 (d) 72.7 (d) 72.7 (d) 73.6 (d) 73.6 (d) 73.6 (d) 73.6 (d) 73.6 (d) 70.7 (d) 70.6 (d) 6					
2' 75.8 (d) 77.6 (d) 78.4 (d) 78.4 (d) 3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 102.8 (d) 102.7 (d) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 72.5 (d) 3" 72.5 (d) 72.5 (d) 72.5 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.5 (d) 72.5 (d) 3"" 72.7 (d) 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.5 (d) 6"" 18.5 (q) 18.5 (q)		1 7			
3' 78.7 (d) 79.0 (s) 87.5 (d) 87.3 (d) 4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 69.9 (d) 72.5 (d) 72.7 (d) 72.6 (d) 72.7 (d) 70.6 (d) 6" 70.7 (d) 70.6 (d) 6" 18.5 (q)		` '	` ,	` ,	
4' 71.9 (d) 74.8 (t) 69.9 (d) 69.8 (d) 5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.5 (d) 3"" 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)		` '	` ,	` '	
5' 78.4 (d) 72.8 (t) 78.1 (d) 78.2 (d) 6' 63.0 (t) 62.3 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)			` '		
6' 63.0 (t) 62.2 (t) 62.2 (t) 1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1" 103.9 (d) 103.9 (d) 2" 72.5 (d) 72.6 (d) 3" 72.7 (d) 72.7 (d) 4" 73.6 (d) 73.6 (d) 5" 70.7 (d) 70.6 (d) 6" 18.5 (q) 18.5 (q)			, ,		
1" 102.8 (d) 102.7 (d) 102.7 (d) 2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 69.9 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)		, ,	72.8 (t)	, ,	, ,
2" 72.5 (d) 72.5 (d) 72.5 (d) 3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 70.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)		63.0 (t)	102.0 (4)	, ,	, ,
3" 73.0 (d) 72.9 (d) 72.9 (d) 4"" 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 70.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)			, ,	` ,	, ,
4"' 74.4 (d) 73.9 (d) 73.8 (d) 5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"' 103.9 (d) 103.9 (d) 72.5 (d) 72.6 (d) 3"'' 72.7 (d) 72.7 (d) 72.7 (d) 4"'' 73.6 (d) 73.6 (d) 73.6 (d) 5"'' 70.7 (d) 70.6 (d) 6"'' 18.5 (q) 18.5 (q)			` ,	` ,	` '
5" 70.6 (d) 69.9 (d) 69.9 (d) 6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)	-		` ,		, ,
6" 18.7 (q) 18.7 (q) 18.7 (q) 1"" 103.9 (d) 103.9 (d) 2"" 72.5 (d) 72.6 (d) 3"" 72.7 (d) 72.7 (d) 4"" 73.6 (d) 73.6 (d) 5"" 70.7 (d) 70.6 (d) 6"" 18.5 (q) 18.5 (q)			` '	` ,	` '
1"' 103.9 (d) 103.9 (d) 2"' 72.5 (d) 72.6 (d) 3"' 72.7 (d) 72.7 (d) 4"' 73.6 (d) 73.6 (d) 5"' 70.7 (d) 70.6 (d) 6"' 18.5 (q) 18.5 (q)				, ,	
2"' 72.5 (d) 72.6 (d) 3"' 72.7 (d) 72.7 (d) 4"' 73.6 (d) 73.6 (d) 5"' 70.7 (d) 70.6 (d) 6"' 18.5 (q) 18.5 (q)	-		18.7 (q)	1 47	1 47
3" 72.7 (d) 72.7 (d) 4" 73.6 (d) 73.6 (d) 5" 70.7 (d) 70.6 (d) 6" 18.5 (q) 18.5 (q)				, ,	, ,
4" 73.6 (d) 73.6 (d) 5" 70.7 (d) 70.6 (d) 6" 18.5 (q) 18.5 (q)	_				
5"' 70.7 (d) 70.6 (d) 6"' 18.5 (q)	-				
6"' 18.5 (q) 18.5 (q)	-				
	-				
A Posserded at 100 MHz				10.5 (q)	10.5 (q)

a Recorded at 100 MHz.

2.3.1. *Taccasuboside* A (**1**)

White amorphous powder; $[\alpha]_D^{17}$ +1.2 (c 0.11, MeOH–CHCl₃ 1:1); ESI: m/z 711 $[M-H]^-$; HRESI–MS: m/z 747.2973 $[M+Cl]^-$ (calcd. for $C_{35}H_{52}O_{15}Cl$ 747.2994); IR(KBr) $\nu_{\rm max}$ (cm $^{-1}$): 3432, 2972, 2952, 2907, 1730, 1639, 1378, 1253, 1072, 1030, 855, 612; 1 H NMR data see Table 1: 13 C NMR data see Table 2.

2.3.2. Taccasuboside B (**2**)

White amorphous powder; $[\alpha]_D^{17}-18.8$ (c 0.2, MeOH); positive FAB-MS: m/z 709 [M+H]⁺; HRESI-MS: m/z 743.3767 [M+Cl]⁻ (calcd. for $C_{38}H_{60}O_{12}Cl$ 743.3773); IR(KBr) ν_{max} (cm⁻¹): 3442, 2926, 2854, 2235, 1632, 1458, 1379, 1243, 1079, 1044, 982, 921, 899 (intensity: 899 > 921), 609; 1 H NMR data see Table 1; 13 C NMR data see Table 2.

2.3.3. Taccasuboside C(3)

White amorphous powder; $[\alpha]_D^{17}$ –89.9 (c 0.15, MeOH); ESI: m/z 899 [M–H]⁻; HRESI-MS: m/z 935.4385 [M+Cl]⁻ (calcd. for C₄₅H₇₂O₁₈Cl 935.4407); IR(KBr) $\nu_{\rm max}$ (cm⁻¹): 3418, 2936, 2848, 2364, 2116, 1631, 1453, 1381, 1138, 1045, 954, 920, 838, 811; ¹H NMR data see Table 1; ¹³C NMR data see Table 2.

2.3.4. Taccasuboside D (4)

White amorphous powder; $[\alpha]_D^{17} - 71.5$ (c 0.11, MeOH); negative FAB: m/z 767 [M–H]⁻; HRESI-MS: m/z 767.3839 [M–H]⁻ 767.3839 (calcd. for $C_{39}H_{59}O_{15}$ 767.3853); IR(KBr) ν_{max} (cm⁻¹): 3423, 2934, 2364, 2044, 1656, 1587, 1454, 1434, 1371, 1238, 1125, 1046, 947, 912, 840, 811, 692; UV(MeOH) $\lambda_{max}(\log \varepsilon)$ 239 (2.19) nm; ¹H NMR data see Table 1: ¹³C NMR data see Table 2.

2.3.5. Acid hydrolysis of compounds **1–4** and GC analysis

Compounds 1, 3, and 4 (2 mg each) were refluxed with 4 M TFA-dioxane (1:1 (v/v), 2 mL) on water bath for 4 h. The reaction mixture was neutralized with 1 M NaOH and filtered. The filtrate was extracted with CHCl₃ and H₂O. The H₂O-souble fraction was evaporated to dryness. The dried sugar residues was diluted in 1 mL pyridine without water and treated with 0.5 mL trimethylchlorsilan (TMCS) and stirred at 60 °C for 5 min. After drying the solution with a stream of N2, the residue was extracted with ether (1 mL). The ether layer was subjected to GC analysis under the following conditions: H₂ flame ionization detector. Column: SGE AC-10 quartz capillary column ($30 \, \text{m} \times 0.32 \, \text{mm} \times 0.25 \, \mu \text{m}$). Column temperature: 180-280 °C with the rate of 3 °C/min, and the carrier gas was N₂ (2 mL/min); injector temperature: 250 °C; injection volume: 2 µl; split ratio: 1/50. The retention times of D-glucose and L-rhamnose were 14.21 min, and 7.66 min, respectively. By the same procedures carried out for compounds 2 (2 mg). The derivatives of D-apiose and L-rhamnose were detected; t_R (min): D-apiose (9.06), and L-rhamnose (7.66). Under the same hydrolysis conditions, compounds 1-4 (8 mg each) were separately subjected to acid hydrolysis to give sugar fractions. After preparative TLC of sugar fractions eluted with CHCl₃-MeOH-H₂O (7:3:0.5), the optical rotation of each purified sugar was measured. The optical rotations were determined after dissolving the sugars in H_2O : $[\alpha]_D^{13}$ +38.7 (c 0.09, H_2O), D-apiose: $[\alpha]_D^{13}$ +7.6 (c 0.06, H_2O), and L-rhamnose: $[\alpha]_{D}^{13}$ -5.1 (c 0.08, H₂O).

2.4. MTT cytotoxicity assays

The bioassay was carried out as described elsewhere [26], with five human cancer cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480). The experiments were repeated twice. Cisplatin was used as the positive control antitumor drug.

3. Results and discussion

The EtOH extract of *T. subflabellata* was partitioned between EtOAc and water to afford EtOAc-soluble portion and then the fraction of water was passed through D-101 macroporous resin to get H_2O -soluble portion. The two portions were subjected to subsequent silica gel, Sephadex LH-20, and Rp-18 silica gel column chromatography to yield four new steroidal glycosides, taccasubosides A-D (1-4) and five known compounds, which were identified by comparison of their NMR and MS data with reported values in the literatures as plantagiolide A (5) [15], chantriolide A (6) [10], chantriolide B (7) [10], diosgenin 3-O- α -L-rhamnopyranosyl $(1 \rightarrow 2)$ -[α -L-rhamnopyranosyl $(1 \rightarrow 3)$]- β -D-glucopyranoside (8) [6], and 26-O- β -D-glucopyranosyl $(1 \rightarrow 2)$ -[$(\alpha$ -L-rhamnopyranosyl $(1 \rightarrow 2)$ -[$(\alpha$ -L-rhamnopyranosyl $(1 \rightarrow 3)$]- β -D-glucopyranoside (9) [14], respectively.

Taccasuboside A (1) was isolated as white amorphous powder. Its molecular formula $C_{35}H_{52}O_{15}$ was determined by HRESI-MS at m/z 747.2973 [M+Cl]⁻ (calcd. for 747.2994), corresponding to 10 degrees of unsaturation. The absorptions in the IR spectrum at 3432, 1730, and 1639 cm⁻¹ suggested the presence of hydroxyl, acyl, and ketone groups, respectively. The ¹H NMR spectrum (Table 1) of 1 exhibited the signals due to an anomeric proton at $\delta_{\rm H}$ 4.97 (d,

b Recorded at 125 MHz.

OH OAC
$$\frac{2^{1}}{A^{2}}$$
, $\frac{20}{A^{2}}$, $\frac{22}{A^{2}}$, $\frac{$

Fig. 1. Selected 2D NMR correlations of 1.

 $J=7.8\,\mathrm{Hz}$), three tertiary methyls at δ_{H} 1.16, 1.20, and 1.59, one secondary methyls at $\delta_{\rm H}$ 0.74 (d, J=6.2 Hz), and two methyls of acetyl groups at $\delta_{\rm H}$ 1.87 and 2.03. The $^{13}{\rm C}$ NMR and DEPT spectra of 1 (Table 2) displayed signals including one ketone group $(\delta_C 209.7)$, two acetyl groups ($\delta_C 20.4$, 21.0, 170.0, and 170.3), four methyls, three methylenes, fourteen methines (seven oxygenated), and three quaternary carbons (one oxygenated), as well as a hexose signals at δ_{C} 106.6 (d), 75.8 (d), 78.7 (d), 71.9 (d), 78.4 (d), and 63.0 (t) assigned by HMQC, ¹H, ¹H-COSY, and HMBC correlations. The monosaccharide of the acidic hydrolysate of 1 was identified as D-glucose on the basis of GC analysis of the silylated sugar residue and the optical rotation value of sugar residue ($[\alpha]_D^{13}$ +38.7, H_2O). A comparison of the ¹H and ¹³C spectroscopic signals of the aglycone moiety of 1 with taccalonolides [16–23] isolated from Tacca genus indicated that the aglycone moiety of 1 was a pentacyclic steroid except for the disappearance of F-ring. The presence of a 2,3-epoxide was supported by the COSY correlations between H-2 $(\delta_{\rm H} \ 3.85, \ {\rm dd}, J = 4.1, \ 4.6) \ {\rm and} \ {\rm H-3} \ (\delta_{\rm H} \ 3.54, \ {\rm br} \ {\rm d}, J = 3.3), \ {\rm and} \ {\rm HMBC}$ correlations of H₂-4 (δ_{H} 2.23 and 2.91) with C-2 (δ_{C} 55.0, d) and C-3 $(\delta_{\rm C}$ 51.2, d). The ¹H, ¹H-COSY spectra of the aglycone of **1** revealed connectivity of two partial structures a (C-1 to C-5) and b (C-7 to 9, C-9 to C-11, C-11 to C-12, C-8 to C-14, C-14 to 17, C-17 to C-20, C-20 to C-21 and C-22), as drawn with bold bonds in Fig. 1. The connectivities of fragments **a** and **b** through C-6 was suggested by the critical HMBC correlations between the C-6 ($\delta_{\rm C}$ 209.7) with H_2 -4 (δ_H 2.23 and 2.91), H-7 (δ_H 4.52), and H-8 (δ_H 3.17), and was further confirmed by correlations H-5 (δ_H 1.68) with C-7 (δ_C 79.2). Similarly, the connectivities of the two tertiary methyls were set up by the aid of the HMBC correlations of Me-18 (δ_H 1.16) with C-12 $(\delta_{\rm C}$ 75.5), C-13 $(\delta_{\rm C}$ 44.6), C-14 $(\delta_{\rm C}$ 47.6), and C-17 $(\delta_{\rm C}$ 54.1), and Me-19 (δ_H 1.59) with C-1 (δ_C 86.5), C-5 (δ_C 44.1), C-9 (δ_C 57.6) and C-10 ($\delta_{\rm C}$ 42.9). Furthermore, the HMBC correlations between Me-25 ($\delta_{\rm H}$ 1.20) with C-16 ($\delta_{\rm C}$ 37.8), C-23 ($\delta_{\rm C}$ 73.0), and C-24 ($\delta_{\rm C}$ 81.3) revealed the oxygenated quaternary carbon at E-ring located between C-16 and C-23. In addition, HMBC correlations of H-12 ($\delta_{\rm H}$ 5.01) with acetyloxy group (δ_{C} 170.3) and H-23 (δ_{H} 5.04) with acetyloxy group $(\delta_{\rm C}$ 170.0) suggested the two acetyloxy groups were linked to C-12 and C-23, respectively. The glucopyranosyl attachment to C-1 could be determined by the HMBC correlations from H-1 ($\delta_{\rm H}$ 3.51) to C-1 ($\delta_{\rm C}$ 106.6). Therefore, the planar structure of **1** was assigned as shown in Fig. 1.

The relative configuration of **1** was established by analysis of key correlations observed in the ROESY spectrum. NOE correlations of Me-18/H-8/Me-19, Me-18/H-16/H-20, H-5/H-9, and of H-17/H-14/H-9 in the ROESY spectrum indicated the *trans* ring fusion for the five rings as well as α -configuration for Me-21. Further NOEs

from Me-19 to H-1 and H-11, from H-1 to H-2 and H-3, and from Me-18 to H-12, were consistent with the 1α , 2α , 3α , 11α , and 12α configurations, while correlations of H-7/H-14, H-16/Me-25, and Me-21/H-23 indicated that the α -orientation for OH-24, and the β -orientation for OH-7 and AcO-23. Consequently, the structure of compound **1** was assigned as shown.

Taccasuboside B (2) was isolated as a white amorphous powder. The molecular formula of 2 was deduced from negative-ion HRESI-MS at m/z 743.3767 [M+Cl]⁻ (calcd. for 743.3773), compatible with the molecular formula $C_{38}H_{60}O_{12}$, which was confirmed by data from the ¹³C NMR spectrum. The IR spectrum, showing absorptions at 3442, 2962, and 1632 cm⁻¹, implied the existence of OH groups, C=C bonds, and CH groups, respectively. The ¹H NMR spectrum showed signals for four steroid methyl groups at $\delta_{\rm H}$ 0.67 (d, J = 4.8 Hz), 0.93 (s), 0.95 (s), 1.17 (d, J = 6.9 Hz), an olefinic proton at δ_H 5.25 (d, I = 4.2 Hz). The above ¹H NMR data, together with olefinic carbons signals at δ_C 141.0 (s, C-5) and 122.0 (d, C-6) and an acetalic carbon signal at $\delta_{\rm C}$ 109.4 (s, C-22) in the $^{13}{\rm CNMR}$ spectrum, indicated **2** to be a $\Delta^{5,6}$ – spirostanol skeleton in the aglycone. The R-configuration of C-25 was deduced from the intensity of the absorptions $(899 > 921 \text{ cm}^{-1})$ in its IR spectrum [27]. Furthermore, the NMR spectroscopic data attributed to the aglycone of **2** were in good agreement with those of heloniogenin [28]. Anomeric region in the ¹H- and ¹³C NMR spectra of showed signals for two anomeric protons at $\delta_{\rm H}$ 5.29 (br s) and 5.66 (d, J = 3.0 Hz) with their corresponding anomeric carbons at $\delta_{\rm C}$ 102.8 and 108.2, respectively (see Tables 1 and 2). Sugars obtained on acid hydrolysis of 2 were identified as D-apiose and L-rhamnose on the basis of GC analysis and the optical rotation values of sugar residues. The β-furanoid anomeric form of the apiofuranosyl was indicated by the chemical shifts of C-1' (δ_C 108.2), C-2' (δ_C 77.6), C-3' (δ_C 79.0), and C-4' ($\delta_{\rm C}$ 74.8) with those of the corresponding carbons of methyl α - and β -apiofuranoside [29], while the anomeric configuration of the rhamnopyranosyl was defined as α -oriented on the basis of the chemical shift values of C-3" (δ_C 73.0), and C-5" $(\delta_C 70.6)$ with those of the corresponding carbons of methyl α - and β-rhamnopyranoside [30]. Long-range correlations from δ_H 5.66 (H-1' of apiose) to $\delta_{\rm C}$ 77.6 (C-3 of aglycone) and from $\delta_{\rm H}$ 5.29 (H-1" of rhamnose) to δ_C 72.8 (C-5' of apiose) in the HMBC spectrum showed that the sugar chain was attached to C-3 of the aglycone and that the rhamnose was linked at the C-5' of the inner apiose. Therefore, the structure of **2** was established as heloniogenin $O-\alpha$ -L-rhamnopyranosyl- $(1 \rightarrow 5)$ - β -D-apiofuranoside.

Taccasuboside D (3) was shown to have the molecular formula $C_{45}H_{72}O_{18}$ on the basis of the negative-ion HRESI-MS (m/z 935.4385 [M+Cl]⁻; calcd. for 935.4407). The ¹H and ¹³C NMR spectra of **3** displayed signals of a glucopyranosyl and two rhamnopyranosyls, whose anomeric protons were observed at $\delta_{\rm H}$ 4.90 (d, J=7.8 Hz), 5.77 (br s), and 5.87 (br s), respectively, together with an aglycone moiety which was closely related to (25S)-isonuatigenin [31]. The ¹³C NMR spectra of **3** showed the downfield shifts at C-22 (δ_{C} 112.2, s), C-23 (δ_{C} 64.6, d), C-24 (δ_{C} 43.6, t), C-25 (δ_{C} 70.0, s) related to (25S)-isonuatigenin and indicated that there was a hydroxyl group substituted on the C-23 of 3. This could be further confirmed by the long-range correlations of C-23 with H-20 and H₂-24, and of Me-27 with C-24, C-25, and C-26 in the HMBC spectrum of 3. The spin-coupling constants of H-23, $^{3}J_{\text{H-23, H-24ax}}$ = 12.0 Hz, and $^{3}J_{\text{H-23, H-24eq}}$ = 4.4 Hz, gave evidence for the 23S configuration. The 25S configuration was deduced from the ROESY correlation from H-24ax ($\delta_{\rm H}$ 2.28) to Me-27 ($\delta_{\rm H}$ 1.27). The β -configuration of the anomeric center of the glucopyranosyl was supported by the relatively large J value of the anomeric proton (J = 7.8 Hz). Furthermore, the HMBC spectrum showed the correlations of H-1" (δ_{H} 5.87) of rhamnopyranosyl with C-2" (δ_{C} 78.4) of glucopyranosyl, H-1 $^{\prime\prime\prime}$ (δ_{H} 5.77) of rhamnopyranosyl with C-3' (δ_C 87.5) of glucopyranosyl, and H-1' (δ_H 4.90, d, J=7.8 Hz)

of glucopyranosyl with C-3 (d 77.9) of the aglycone, which supported compound **3** had the same saccharide chain linked at C-3 as in the compound **8**. Thus, the structure of **3** was formulated as (23S, 25S)-spirost-5-en-3 β ,23,25-triol 3- θ - θ -L-rhamnopyranosyl- θ - θ -p-glucopyranoside.

Taccasuboside D (4) had a molecular formula of C₃₉H₆₀O₁₅ on the ground of the negative-ion HRESI-MS at m/z 767.3839 $[M-H]^-$ (calcd. for $C_{39}H_{59}O_{15}$ 767.3853). The ¹H NMR spectrum of **4** exhibited two tertiary methyls at $\delta_{\rm H}$ 0.91 and 1.02, and a methyl singlet at $\delta_{\rm H}$ 2.23 attached to a deshielding moiety, as well as three anomeric proton signals at $\delta_{\rm H}$ 4.89 (d, J=7.8 Hz), 5.77 (br s), and 5.88 (br s). The existence of an α , β -unsaturated carbonyl group was verified by the IR (1656 cm $^{-1}$), UV [239 nm (log ε 2.19)], and ¹³C NMR signals at δ_C 144.8 (C-16, d), 155.2 (C-17, s), and 196.3 (C-20, s). All the spectral data mentioned above and comparison with those of previously reported compounds allowed identification of the aglycone of **5** as 3β-hydroxypregna-5,16-dien-20-one [8]. Analysis of the NMR data (Tables 1 and 2) for the sugar portion of 4 and comparison with those of 3 revealed that these two compounds had the same saccharide chain linked at C-3. Consequently, the structure of 4 was elucidated as pregna-5,16-dien-3 β -ol-20-one 3-O- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -[α -Lrhamnopyranosyl- $(1 \rightarrow 3)$]- β -D-glucopyranoside.

The selected compounds **1–4**, **8**, and **9** were evaluated for their cytotoxic activities against five human cancer cell lines (HL-60, SMMC-7721, A549, MCF-7, and SW480), in which cisplatin (DDP) was used as the reference substance and exhibited IC₅₀ values for the cell lines of 1.50, 14.75, 14.75, 15.68, and 25.57 μ M, respectively. The new compounds **1–4** were inactive (IC₅₀ > 40 μ M). The known compound **8** has been reported having cytotoxicity against HeLa cells and showing a significant microtubule-stabilizing activity *in vitro* [32]. In our assay, compound **8** exhibited moderate activity against the above cell lines with IC₅₀ values of 18.18, 25.08, 17.32, 18.14, and 15.73 μ M, while compound **9** showed significant cytotoxicity on the five tumor cell lines with IC₅₀ values of 4.63, 4.34, 3.00, 11.13, and 2.68 μ M, respectively. The results suggested that compound **9** had stronger cytotoxicity on the five tumor cell lines than that of the positive control DDP.

Acknowledgements

This project was financially supported by the Natural Science Foundation of Yunnan Province (no. 2007C094M) and the Young Academic and Technical Leader Raising Foundation of Yunnan Province (no. 2008PY066).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.steroids.2011.04.003.

References

- [1] Hou KZ. A dictionary of the families and genera of Chinese seed plants. second ed. Beijing: Science Press; 1998. p. 477.
- [2] Wu ZY. Dictionary of Yunnanese seed plants. Kunming: Yunnan People Press; 1984. p. 1996.
- [3] Tripathi RD, Tiwari KP. Phytochemistry investigation of the roots of *Tacca aspera*. Planta Med 1981;41:414-5.
- [4] Yokosuka A, Mimaki Y, Sakagami H, Sashida Y. New diarylheptanoids and diarylheptanoid glucosides from the rhizomes of *Tacca chantrieri* and their cytotoxic activity. J Nat Prod 2002;65:283–9.
- [5] Peng J, Jackson EM, Babinski DJ, Risinger AP, Helms G, Frantz DE, et al. Evelynin, a cytotoxic benzoquinone-type retro-dihydrochalcone from Tacca chantrieri. J Nat Prod 2010;73:1590–2.
- [6] Zhou J, Chen CX, Liu RM, Yang CR. Studies on the chemical components of the Tacca chanteraeri André. Acta Botanica Sinica 1983;25:568–73.

- [7] Abedel-Aziz A, Brain K, Blunden G, Grabb T, Bashir AK. Isomeric F-ring dihydroxylated 22,25-epoxyfurostene and spirostene saponins from *Tacca leontopetaloides*. Phytochemistry 1990;26:1643–6.
- [8] Yokosuka A, Mimaki Y, Sashida Y. Steroidal and pregnane glycosides from the rhizomes of *Tacca chantrieri*. J Nat Prod 2002;65:1293–8.
- [9] Yokosuka A, Mimaki Y, Sashida Y. Spirostanol saponins from the rhizomes of *Tacca chantrieri* and their cytotoxic activity. Phytochemistry 2002;61: 73–8.
- [10] Yokosuka A, Mimaki Y, Sashida Y. Chantriolides A and B, two new withanolide glucosides from the rhizomes of *Tacca chantrieri*. J Nat Prod 2003;66: 876–8.
- [11] Yokosuka A, Mimaki Y, Sashida Y. Taccasterosides A-C, novel C₂₈-sterol oligoglucosides from the rhizomes of *Tacca chantrieri*. Chem Pharm Bull 2004:52:1396-8
- [12] Yokosuka A, Mimaki Y, Sakuma C, Sashida Y. New glycosides of the campesterol derivative from the rhizomes of *Tacca chantrieri*. Steroids 2005;70:257–65.
- [13] Liu HY, Chen CX. Two new steroidal saponins from *Tacca plantaginea*. Chin Chem Lett 2002:13:633–6.
- [14] Liu HY, Ni W, Hao XJ, Chen CX. Steroidal saponins from *Tacca plantaginea*. J Asian Nat Prod Res 2006;8:293–8.
- [15] Liu HY, Ni W, Xie BB, Zhou LY, Hao XJ, Wang X, et al. Five new withanolides from *Tacca plantaginea*. Chem Pharm Bull 2006;54:992–5.
- [16] Chen ZL, Wang BD, Chen MQ. Steroidal bitter principles from *Tacca plantaginea*: structures of taccalonolide A and B. Tetrahedron Lett 1987;28:1673–5.
- [17] Chen ZL, Wang BD, Shen JH. Taccalonolide C and D, two pentacyclic steroids of Tacca plantaginea. Phytochemistry 1988;27:2999–3001.
- [18] Shen JH, Chen ZL, Gao YS. The pentacyclic steroidal constituents of *Tacca plantaginea*: taccalonolide E and F. Chin J Chem 1991;9:92–4.
- [19] Shen JH, Chen ZL, Gao YS. Taccalonolides from *Tacca plantaginea*. Phytochemistry 1996:42:891–3
- [20] Shen JH, Chen ZL, Gao YS, Wichtl M. Five taccalonolides from *Tacca plantaginea*. Planta Med 1997;63:40–3.

- [21] Huang Y, Liu JK, Mühlbauer A, Henkel T. Three novel taccalonolides from the tropical plant *Tacca subflabellata*. Helv Chim Acta 2002;85:2533–8.
- [22] Mühlbauer A, Seip S, Nowak A, Tran VS. Five novel taccalonolides from the roots of the Vietnamese plant *Tacca paxiana*. Helv Chim Acta 2003;86:2065–72.
- [23] Yang JY, Zhao RH, Chen CX, Ni W, Teng F, Hao XJ, et al. Taccalonolides W-Y, three new pentacyclic steroids from *Tacca Plantaginea*. Helv Chim Acta 2008;91:1077–82.
- [24] Tinley TL, Randall-Hlubek DA, Leal RM, Jackson EM, Cessac JW, Quada JC, et al. Taccalonolides E and A: plant-derived steroids with microtubule-stabilizing activity. Cancer Res 2003;63:3211–20.
- [25] Risinger AL, Jackson EM, Polin LA, Helms GL, LeBoeuf DA, Joe PA, et al. The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res 2008;68:8881–8.
- [26] Mosmman T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.
- [27] Jones RN, Katzenellenbogen K, Dobriner K. The infrared absorption spectra of the steroid sapogenins. J Am Chem Soc 1953;75:158–66.
- [28] Xie BB, Liu HY, Ni W, Chen CX. Ypsilandrosides C-G, five new spirostanol saponins from Ypsilandra thibetica. Steroids 2009;74:950-5.
- [29] Kitagawa I, Sakagami M, Hashiuchi F, Zhou JL, Yoshikawa M, Ren J. Apio-glycyrrhizin and araboglycyrrhizin, two new sweet oleanene-type triterpene oligoglycosides from the root of Glycyrrhiza inflata. Chem Pharm Bull 1989:37:551–3.
- [30] Kasai R, Okihara M, Asakawa J, Mizutani K, Tanaka O. 13 C NMR study of α and β -anomeric pairs of D-mannopyranosides and L-rhamnopyranosides. Tetrahedron 1979:35:1427–32.
- [31] Chen CX, Zhang YD, Zhou J. The glycosides of aerial parts of *Paris polyphylla* var. *yunnanensis*. Acta Bot Yunnan 1995;17:473–8.
- [32] Shwe HH, Aye M, Sein MM, Htay KT, Kreitmeier P, Gertsch J, et al. Cytotoxic steroidal saponins from the rhizomes of *Tacca integrifolia*. Chem Biodivers 2010:7:610–22.