YPEST-04067; No of Pages 6

ARTICLE IN PRESS

Pesticide Biochemistry and Physiology xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Pesticide Biochemistry and Physiology

journal homepage: www.elsevier.com/locate/pest

Anti-TMV activity and functional mechanisms of two sesquiterpenoids isolated from *Tithonia diversifolia*

Lihua Zhao ^{a,b}, Jiahong Dong ^b, Zhonghui Hu ^c, Shunlin Li ^c, Xiaoxia Su ^b, Jie Zhang ^b, Yueyan Yin ^b, Tao Xu ^b, Zhongkai Zhang ^{b,*}, Hairu Chen ^{a,*}

- ^a College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- ^b The Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Kunming 650204, China
- ^c Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, China

ARTICLE INFO

Article history: Received 5 January 2017 Received in revised form 30 March 2017 Accepted 30 May 2017 Available online xxxx

Keywords: Curative activities Sesquiterpene Half-leaf method Bio-pesticides

ABSTRACT

Unlike chemical pesticides, antiviral plants are biodegradable, replenishable and safe. In this study, 14 sesquiterpene compounds from *Tithonia diversifolia* were tested for their activities against *Tobacco mosaic virus* (TMV) using the half-leaf method. Tagitinin C (Ses-2) and 1 β -methoxydiversifolin-3-0-methyl ether (Ses-5) were found to have in vivo curative activities of 62.86% and 60.27% respectively, at concentrations of 100 µg/mL, respectively. In contrast, the in vivo curative inhibition rate of control agent ningnanmycin was 52.48%. Indirect enzyme-linked immunosorbent assay (ID-ELISA) also verified Ses-2 and Ses-5 had higher inhibition activities than the control agent ningnanmycin. Additionally, qRT-PCR showed that both Ses-2 and Ses-5 can partly inhibit the expression of CP and RdRp, two genes that play key roles in TMV infection. When TMV started to systemically spread, Ses-2 inhibited CP expression while Ses-5 inhibited RdRp expression. These results suggest that the two bio-agents have anti-TMV activities and may be used as bio-pesticides to control the plant virus.

© 2017 Published by Elsevier Inc.

1. Introduction

Tithonia diversifolia (Asteraceae) is widely distributed across tropical regions [1]. Its extracts have anti-inflammatory, analgesic, antimalarial, antimicrobial, antidiabetic, anti-cancer and anti-nematodosis effects [2, 3,4]. Sesquiterpene lactones are a major constituent of Tithonia diversifolia secondary compound, and they have a wide spectrum of biological activities, including inhibition of Leishmania and bladder cancer [5,6]. Several findings have indicated that crude ethanol extracts from Tithonia diversifolia leaves have antiviral activity against TMV [7], but the underlying mechanism has remained unknown.

Tobacco mosaic virus (TMV) is one of the most damaging plant viruses [8], causing significant yield losses in crop production worldwide [9–11]. The TMV genome consists of a single strand of positive-sense RNA encoding at least four proteins [12]. RNA-dependent RNA polymerase (RdRp) mediates the genomic replication of TMV [13] and is also one of the key components necessary for cell-to-cell movement of the virus [14]. The coat protein (CP) plays a very important role throughout

Abbreviations: TMV, Tobacco mosaic virus; ID-ELISA, Indirect enzyme-linked immunosorbent assay; CP, coat protein; RdRp, RNA-dependent RNA polymerase; qRT-PCR, Real-time fluorescence quantification.

E-mail addresses: zhongkai99@sina.com~(Z.~Zhang), 13908854041@126.com~(H.~Chen).

the life of the virus as it affects virion assembly [15] and is also required for systemic infection and viral replication [16–18]. Moreover, it greatly affects the development of symptoms in virus-infected plants [19]. Therefore, RdRp and CP are potential targets for the inhibition of viruses and should be examined in studies on the effects of anti-viral compounds on TMV replication.

Many methods have been recently described to counteract TMV infection or proliferation. Pesticides are used widely because they are inexpensive and easy to handle, but they are potentially toxic to many beneficial species and may leave residues that contaminate the environment. Thus, the development of biogenic pesticides is a current research priority. Several of these bio-agents with antiviral activity against TMV have been studied. Seco-pregnane steroids extracted from Strobilanthes cusia have exhibited against TMV and can suppress the expression of viral subgenomic RNA(s) without affecting the accumulation of viral genomic RNA [20]. Ningnanmycin, an antiviral agent isolated from Streptomyces noursei var. x ichangensis, has been shown to promote the systemic accumulation of pathogenesis-related proteins and the expression of resistance-related genes that are markers of systemic acquired resistance [21]. In addition, ningnanmycin also inhibited the assembly of the four-layer aggregate disk of CP [21,22]. A glycoprotein of BDP-30 from Boerhaavia diffusa L., suppressed TMV infection through inducing systemic resistance [23]. Other compounds, such as thiourea, schisanhenol derivatives, sulfated lentinan, and various polysaccharide peptides have exhibited activities and stimulated the contents of POD,

http://dx.doi.org/10.1016/j.pestbp.2017.05.009 0048-3575/© 2017 Published by Elsevier Inc.

^{*} Corresponding authors.

1: Tagitinin C (Ses-2); 2: 1β-methoxydiversifolin-3-0-methy1 ether (Ses-5)

Fig. 1. The molecular structure of Ses-2 and Ses-5. 1: Tagitinin C (Ses-2); 2: 1β -methoxydiversifolin-3-0-methyl ether (Ses-5).

SOD, and PAL proteins, which are related to plants pathogen resistance [24–27].

In the current study, we identified two sesquiterpenoid compounds from *Tithonia diversifolia*, Tagitinin C (Ses-2) and 1β -methoxydiversifolin-3-0-methyl ether (Ses-5), with anti-TMV activities and examined their potential anti-TMV mechanism. These two compounds could be developed as new biogenic pesticides with agricultural applications.

2. Materials and methods

2.1. Materials

TMV was isolated from diseased tobacco plants in our laboratory. Its CP nucleotide sequence shared the highest nucleotide identity (i.e., 99%) with that of the TMV-152 isolate. The virus was maintained and cultured in *Nicotiana tabacum* cv. K326. Purified virus particles were stored $-20\,^{\circ}\text{C}$. A rabbit antibody to TMV CP was prepared by our laboratory.

N. tabacum cv. K326 and *N. glutinosa* seeds were provided by the Yunnan Academy of Tobacco Agricultural Science.

The sesquiterpenoid compounds were provided by Professor Xiaojiang Hao's Laboratory. Ningnanmycin was purchased from Heilongjiang DeQiang Biology Co., Ltd. The molecular structures of the two compounds are shown in Fig. 1.

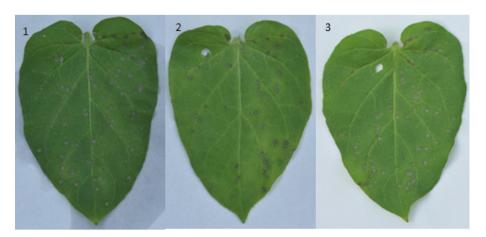
2.2. Purified TMV particles

TMV particles were purified using Gooding's method [28] and stored at -20 °C for later use. TMV particles were diluted to a concentration of 50 μ g/mL with 0.01 M phosphate-buffered saline (PBS) before use.

2.3. Plant material preparation

N. glutinosa and *N. tabacum* cv. K326 plants were cultivated in an insect-free greenhouse. The experiments were conducted when the plants grew to the 6–8 leaf stage. *N. glutinosa* was used to assay inhibition activity, while *N. tabacum* cv. K326 was used to study the mechanism of the virus.

The whole plant of *Tithonia diversifolia* was collected in Xishuangbanna, Yunnan Province, China, in August 2013. The specimen was identified by Yu Chen of Kunming Institute of Botany (KIB), Chinese Academy of Sciences (CAS). A voucher specimen (H20110805) has been deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany.


2.4. Compound separation and preparation

Dried powder of the whole plant of *Tithonia diversifolia* (18 kg) was extracted with MeOH (three times under reflux for 4, 4, and 3 h). The solvent was removed under reduced pressure to give a residue (2720 g, 15.1%), which was suspended with water and then extracted with petroleum ether and EtOAc successively. The extracts were evaporated under vacuum to afford the corresponding extracts of petroleum ether (315 g) and EtOAc (246 g). The EtOAc extract was separated to 10 fractions (A–I) by RP-18 silica gel column chromatography (20–45 μm , 49 \times 460 mm, 440 g), eluted with MeOH–H₂O (v/v = 30:70, 40:60, 50:50, 60:40, 70:30, each 10 L).

Fraction E (25 g), a silica gel G column (100–200 mesh, 10×120 cm, 1.65 kg), eluted with petroleum ether/EtOAc (v/v = 9:1, 7:3, 6:4, 1:1, 0:1, each 30 L), to give five fractions (1–5). Fraction 3 (5.13 g) was extensively chromatographed over columns of silica gel and Sephadex LH-20 (CHCl3–MeOH, 1:1, 3.2 \times 140 cm) to afford compounds (208.0 mg) and other compounds.

Fraction F (10.6 g). By silica gel G column (100–200 mesh, 20 \times 150 cm, 1.0 kg) eluted with petroleum ether and EtOAc (v/v = 9:1, 7:3, 6:4, 1:1, 0:1, each 20 L), also gave five fractions (1–5). Fraction 2 (2.3 g) was subjected respectively to RP-18 silica gel column chromatography (20–45 μm , 30 \times 460 mm, 150 g), eluted with MeOH–H₂O (v/v = 3:7, 5:5, 7:3, 8:2, 9:1, each 10 L), and Sephadex LH-20 (CHCl3–MeOH, 1:1, 1.8 \times 120 cm), to give compounds (41 mg) and other compounds.

The compounds were dissolved in dimethyl sulfoxide (DMSO) and diluted with distilled H₂O to the required concentrations. A solution of equal DMSO concentration was used as a negative control agent (CK). Ningnanmycin was used as a positive control agent.

The whole leaf was inoculated with 50μg/mL TMV, 24 h later, left half leaf were smeared with agents. 1.100μg/mL Sec-5, 2. 100μg/mL Sec-2, 3. 80μg/mL Ningnanmycin

Fig. 2. Local lesions on the leaves of Nicotiana glutinosa in the curative effect treatments at 3 days postinoculation. The whole leaf was inoculated with 50 μg/mL TMV, 24 h later, left half leaf was smeared with agents. 1.100 μg/mL Sec-5, 2. 100 μg/mL Sec-2, 3. 80 μg/mL Ningnanmycin.

L. Zhao et al. / Pesticide Biochemistry and Physiology xxx (2017) xxx-xxx

Table 1Inhibition effect of compound Ses-2, Ses-5 on TMV in *Nicotiana glutinosa* by half leaf method

Compound name	Average inhibition rate (%)		
	Curative effect	Protective effect	
Ses-2 (100 μg/mL)	62.86 ± 1.3a	33.6 ± 5.8b	
Ses-5 (100 μg/mL)	$60.27 \pm 5.6ab$	$25.1 \pm 5.3b$	
Ningnanmycin (NNM) (80 μg/mL)	$52.48 \pm 3.3b$	$52.1\pm6.1a$	

CK+: positive control; CK-: negative control. All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

2.5. Protective effect in vivo

The compound solutions were smeared with a cotton swab onto the left side of *N. glutinosa* leaves along the main vein, whereas the DMSO solvent was smeared onto the right side of the same leaf as a negative control. After 6 h, TMV particles were inoculated onto the whole leaf. Each half of the leaf was smeared with 100 μ L of TMV at concentration of 50 μ g/mL, respectively. Each inoculated leaf was washed with water after 10 min. The numbers of local lesions were recorded 3–4 days after inoculation. Three replicates were conducted for each compound and control agent.

2.6. Curative effect in vivo

In contrast to the protective effect assays, the curative effect treatments began with inoculating TMV particles ($50 \, \mu g/mL$) onto whole leaves of *N. glutinosa* with cotton swabs. After 24 h, the compound solutions were smeared onto the left half of a previously TMV-inoculated leaf, while the DMSO solution was smeared onto the right side as a negative control. The local numbers of lesions were recorded 3–4 days after inoculation. Three replicates were conducted for each sample.

The TMV inhibition rates of the compounds were then calculated according to the formula. Inhibition rate (%) = $[(T - C) / T] \times 100\%$, where T is the average number of local lesions for the negative control and C is the average number of local lesions for the treatment.

2.7. ID-ELISA method

ID-ELISA was conducted according to a method previously described method with modifications [29] to determine the antivirus activities of each compound. Leaves (0.2 g) were ground with a mortar-grinder in a 1/3 dilution of PBS buffer (137 mM NaCl, 1 mM KH₂PO₄, 8 mM Na₂HPO₄·12H₂O, 3 mM KCl). Crude extracts (100 μL) were added into one ELISA plate well for coating and incubated overnight at 4 °C or for 2 h at 4 °C. Then the plate was washed with PBST buffer (137 mM NaCl, 1 mM KH₂PO₄, 8 mM Na₂HPO₄·12H₂O, and 3 mM KCl 0.05% Tween 20). The TMV CP rabbit antibody was diluted in conjugate buffer (PBST buffer containing 2% bovine serum albumin), and loaded into the plate wells (100 μL per well). Prior to incubation, 100 μL of AP-

Table 2The inhibitory effect of compound Sec-2 and Sec-5 on TMV in *Nicotiana tabacum* cv. K326 assayed by ID-ELISA.

Compound name	The concentration of virus (optical density OD450)		
	Treated leaves	Systematic leaves	
Ses-2 (100 μg/mL)	$0.181 \pm 0.012b$	$0.175 \pm 0.002b$ $0.364 \pm 0.008c$ $0.387 \pm 0.029c$ $0.589 \pm 0.047a$	
Ses-5(100 μg/mL)	0.200 ± 0.016 bc		
Ningnanmycin (NNM) (80 μg/mL)	$0.210 \pm 0.013c$		
CK+	0.291 ± 0.033 a		
CK —	$0.099 \pm 0.001d$	$0.099 \pm 0.001d$	

CK+: positive control; CK-: negative control. All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

Table 3The inhibitory effect of compound Sec-2 and Sec-5 with different concentration on TMV in *Nicotiana tabacum* cv. K326 assayed by ID-ELISA.

Compound name Concentration	Ses-2	Ses-5
25 μg/mL 50 μg/mL 75 μg/mL 100 μg/mL Ningnanmycin (80 μg/mL) CK + CK —	$\begin{array}{c} 0.703 \pm 0.02c \\ 0.642 \pm 0.01d \\ 0.612 \pm 0.04d \\ 0.545 \pm 0.03de \\ 0.750 \pm 0.07b \\ 1.312 \pm 0.02a \\ 0.094 \pm 0.001f \end{array}$	$\begin{array}{c} 0.740 \pm 0.05 b \\ 0.707 \pm 0.007 c \\ 0.632 \pm 0.02 d \\ 0.620 \pm 0.02 d \end{array}$

CK+: positive control; CK-: negative control. All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

conjugated goat anti-rabbit IgG (Sigma-Aldrich, St. Louis, MO, USA) at a 1/5000 dilution was loaded into each well. The plates were incubated for 2 h at 37 °C, and washed with PBST buffer. A color-developing solution was prepared by dissolving *p*-nitrophenyl phosphate disodium hexahydrate (Sigma-Aldrich) in substrate buffer (9.7% diethanolamine and 3 mM NaN₃, pH 9.8) to a final concentration of 1 mg/mL, and 100 µL was loaded into each well. The absorbance at 405 nm was measured using a model *Elx* 808 microplate ELISA reader (Bio-Tek Instruments, Inc., Winooski, VT, USA). Crude extracts from healthy leaves was used as a negative control, PBS buffer were used as a blank control, and TMV-infected leaves were used as a positive control.

2.8. Real- time fluorescence quantification (qRT-PCR)

qRT-PCR was conducted to determine the absolute number of TMV CP and RdRp transcripts. Total RNA was extracted from tobacco leaves (0.2 g, fresh weight) using TriPure Isolation Reagent (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer's directions. The concentration of each RNA sample was measured with a NanoDrop ND-2000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Only the RNA samples with an A₂₆₀/A₂₈₀ ratio (an indicator of protein contamination) of 1.9-2.1 and an A_{260}/A_{230} ratio (an indicator of reagent contamination) >2.0 were used for the analysis. The integrity of RNA samples was assessed by agarose gel electrophoresis. The primer pair TMV-CP-F (5'-ACGACTGCCGAAACGTTAGA-3'), TMV-CP-R (5'-CAAGTTGCAGGACCAGAGGT-3') and TMV-RdRp-F (5'-TAGGCCAGCTCGCAAGATTTT-3'), TMV-RdRp-R ACTTTTGCTTGGGTTGTGCTTT-3') were designed using Primer5 software that is a commercial software product based on the nucleotide sequences of the TMV CP and RdRp gene sequence deposited in GenBank (EMBL: AJ239099; NCBI: AY740529). First-strand cDNA was synthesized using One-Step gDNA Removal and cDNA Synthesis SuperMix (Transgen, Beijing, China). Then, qRT-PCR was conducted with TransStart Tip Green qPCR SuperMix (Transgen). Each 25 µL, reaction volume consisted of 0.26 µmol/L final concentration of primers, 12.5 μL of Tip Mix, 0.5 μL of Reference Dye II and 2 μL of cDNA, with the remaining volume filled by RNAse-free H₂O. Real-time thermo cycling process was performed on an Applied Biosystems Stepone Plus (Applied Biosystems, Foster City, CA, USA) under the following cycling conditions: denaturation for 30s at 94 °C, followed by 40 cycles of 5 s at 94

Table 4TMV CP transcript levels in the inoculated leaves by qRT-PCR assays in the curative treatment.

Sample names	Concentration (ng/µL)			
	3 dpi (×10 ⁷) 4 dpi (×10 ⁷) 5 dpi (×10 ⁷)			
Positive control	$8.70 \pm 0.30a$	17.80 ± 0.80 a	$31.26\pm0.35a$	
Ningnanmycin	$5.53 \pm 0.50b$	$13.48 \pm 0.26b$	$24.20 \pm 0.53b$	
Ses-2	$2.76 \pm 0.23c$	$5.16 \pm 0.21c$	$7.18 \pm 0.06c$	
Ses-5	$2.47\pm0.27c$	$14.17 \pm 0.45b$	$7.67\pm0.06d$	

All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

Table 5TMV CP transcript levels in the systematic leaves by qRT-PCR assays in the curative treatment.

Sample names	Concentration (ng/	Concentration (ng/μL)					
	1 dpi	2 dpi	3 dpi (×10 ⁵)	4 dpi (×10 ⁵)	5 dpi (×10 ⁵)	6 dpi (×10 ⁵)	
Positive control	$99.80 \pm 4.38a$	$24,418.83 \pm 3028.94a$	9.89 ± 0.46 a	16.33 ± 1.39a	483.4 ± 0.21 a	578.90 ± 0.95a	
Ningnanmycin	$21.59 \pm 0.26b$	$56.45 \pm 7.40b$	$5.22 \pm 0.54b$	$5.76 \pm 0.46b$	$13.32 \pm 0.17b$	$0.5 \pm 0.05b$	
Ses-2	$20.30 \pm 1.24b$	$913.59 \pm 11.37c$	$7.84 \pm 0.16c$	$14.65 \pm 0.61a$	$16.83 \pm 1.21c$	$4.99 \pm 0.31c$	
Ses-5	$7.14 \pm 0.84c$	$7565.99 \pm 467.31d$	$1.03\pm0.01d$	$11.84 \pm 0.22c$	$19.65 \pm 0.77d$	$4.38\pm0.40c$	

All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

 $^{\circ}$ C for denaturation, 30 s at 55 $^{\circ}$ C for annealing, and 30 s at 72 $^{\circ}$ C for extension and fluorescent signal detection.

2.9. Standard curve

DNA fragments were amplified with the aforementioned primer pair, cloned into a pEASY-T1 vector (Transgen), and transformed into competent *Escherichia coli* strain DH5 α cells. The insertion of PCR products was confirmed by colony PCR screening and sequencing. Recombinant plasmids were extracted with EasyPure Plasmid MiniPrep Kit (Transgen). The concentration of the purified plasmid DNA was measured with a NanoDrop ND-2000 spectrophotometer (NanoDrop Technologies). Then, the plasmid DNA was diluted as the standard samples from a dilution series (of 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} , and 10^{-6} concentrations.

2.10. Statistical analysis

Data are expressed as mean \pm SD. STATISTICA version 12.0 for Windows (StatSoft, Inc.) was used to perform the statistical analysis. To compare difference in means, SPSS statistics 17.0 was used to analysis of variance (ANOVA). The significance levels for tests were P < 0.05.

3. Results

3.1. Compound structural analysis

Tagitinin C (Ses-2), a colorless oil liquid, possessed the molecular formula $C_{19}H_{24}O_6$, as determined by the ESI-MS, ^{13}C NMR and DEPT data. Comparison of the 1D NMR spectroscopic data of 1 with those of Tagitinin C revealed that their structures were same each other. The structure was determined as Tagitinin C [30].

Tagitinin C (Ses-2): colorless oily; $C_{19}H_{24}O_{6}$; ESI-MS m/z: 371 [M + Na]+; ^{1}H NMR (CDCl3, 400 MHz) δ (H) (ppm): 6.92 (1H, d, J = 17.1 Hz, H-1), 6.31 (1H, d, J = 1.5 Hz, H-13a), 6.22 (1H, d, J = 17.1 Hz, H-2), 5.83 (1H, dd, J = 9.1, 1.2 Hz, H-6), 5.77 (1H, d, J = 1.5 Hz, H-13b), 5.40 (1H, d, J = 9.1 Hz, H-5), 5.30 (1H, ddd, J = 10.0, 6.3, 1.2 Hz, H-8), 3.53 (1H, d, J = 1.2 Hz, H-7), 2.44 (1H, dd, J = 14.0, 6.3 Hz, H-9), 2.38 (1H, m, H-2'), 1.96 (1H, dd, J = 14.0, 10.0 Hz, H-9), 1.91 (3H, s, H-15), 1.48 (3H, s, H-14), 1.02 (3H, d, J = 6.7 Hz, H-3'), 1.01 (3H, d, J = 6.7 Hz, H-4'); ^{13}C NMR (CDCl3, 100 MHz) δ_C (ppm): 197.0 (s, C-3), 176.3 (s, C-1'), 169.8 (s, C-12), 160.8 (d, C-1), 138.8 (s, C-4), 137.2 (d, C-5), 136.0 (s, C-11), 129.5 (d, C-2), 124.6 (t, C-13), 76.0 (d, C-6), 74.1 (d, C-8), 71.9 (s, C-10), 48.3 (t, C-9), 46.9 (d, C-7), 34.0 (d, C-2'), 28.8 (q, C-14), 19.6 (q, C-15), 18.8 (q, C-3'), 18.6 (q, C-4').

 1β -Methoxydiversifolin-3-0-methyl ether (Ses-5): a colorless oil liquid, possessed the molecular formula $C_{20}H_{28}O_7$, as determined by the ESI-MS, 13 C NMR and DEPT data. Comparison of the 1D NMR spectroscopic data of 2 with those of 1-methoxydiversifolin revealed that their structures were same each other. The structure was determined as 1-methoxydiversifolin [31].

 1β -Methoxydiversifolin-3-0-methyl ether (Ses-5): colorless oily, $C_{20}H_{28}O_7$; positive ESI-MS m/z: 403 [M + Na]+; 1 H NMR (CDCl3, 400 MHz) $\delta_{\rm H}$: 6.23 (1H, d, J = 2.7 Hz, H-13a), 5.60 (1H, d, J = 1.8 Hz, H-5), 5.58 (1H, d, J = 2.7 Hz, H-13b), 5.39 (1H, ddd, J = 5.5, 3.9, 1.8 Hz, H-6), 4.08 (1H, ddd, J = 6.6, 4.8, 2.4 Hz, H-8), 4.02 (1H, dd, J = 5.5, 6.6 Hz, H-7), 3.38 (3H, s, H-0Me), 2.59 (1H, dd, J = 12.6, 6.5 Hz, H-1), 2.39 (1H, dd, J = 14.0, 6.5 Hz, H-2a), 2.13 (1H, dd, J = 14.0, 12.6 Hz, H-2b), 1.98 (1H, d, J = 13.9 Hz, H-9a), 1.81 (3H, s, H-15), 1.72 (1H, dd, J = 13.9, 4.8 Hz, H-9b), 1.51 (3H, s, H-14), 1.04 (3H, d, J = 7.0 Hz, H-3′), 1.03 (3H, d, J = 7.0 Hz, H-4′). 13 C NMR (CDCl3, 100 MHz) $\delta_{\rm C}$ (ppm): 176.1 (s, C-1′), 170.0 (s, C-12), 140.4 (s, C-4), 136.2 (s, C-11), 128.7 (d, C-5), 122.7 (t, C-13), 103.5 (s, C-3), 86.3 (d, C-1), 81.9 (s, C-10), 75.4 (d, C-6), 70.5 (d, C-8), 58.6 (q, C-1-OCH3), 49.6 (d, C-7), 41.5 (t, C-2), 35.1 (t, C-9), 34.0 (d, C-2′), 27.2 (s, C-14), 22.5 (s, C-15), 19.1 (q, C-3′), 18.6 (q, C-4′).

3.2. Anti-TMV activities

The anti-TMV activity of 14 sesquiterpene compounds from *Tithonia diversifolia* was tested at concentration of 100 µg/mL in *Nicotiana glutinosa* using the half-leaf method. Based on the inhibition rates of local lesions on the leaves of *N. glutinosa* (Fig. 2), two of the 14 compounds, specifically Tagitinin C (Ses-2) and 1β -methoxydiversifolin-3-0-methyl ether (Ses-5) showed higher curative efficacy than ningnanmycin (Table 1). The curative inhibition rates of Ses-2 and Ses-5 against TMV were 60.27% and 62.86% respectively. However, these compounds exhibited no protective efficacies against TMV.

3.3. Verification of anti-TMV effects via ID-ELISA

To further confirm the anti-TMV activities of Ses-2 and Ses-5, the relative content of TMV was measured using Indirect enzyme-linked immunosorbent assay (ID-ELISA). The relative content of TMV in K326 tobacco leaves treated with Ses-2 and Ses-5 decreased significantly, indicating the accumulation of TMV in the treated leaves might be inhibited, especially in the systemic leaves of the plants treated with these compounds (Table 2).

Table 6TMV RdRp transcript levels in the inoculated leaves by qRT-PCR assays in the curative treatment.

Sample names	Concentration (ng/µL)				
	1 d	2 d	3 d		
Positive control	$24.01 \pm 5.93 \times 10^7 \text{ a}$	$251.41 \pm 27.26 \times 10^7$ a	$373.94 \pm 3.48 \times 10^7 \text{ a}$		
Ningnanmycin	$0.88 \pm 0.04 \times 10^7 \mathrm{b}$	$103.28 \pm 8.64 \times 10^7 \mathrm{b}$	$146.68 \pm 12.59 \times 10^7 \text{ b}$		
Sec 2	$9.72 \pm 0.08 \times 10^7 \mathrm{c}$	$144.08 \pm 9.05 \times 10^7 \mathrm{c}$	$234.22 \pm 8.36 \times 10^7 \mathrm{c}$		
Sec 5	$4.50 \pm 0.05 \times 10^7 \mathrm{d}$	$2.54 \pm 0.03 \times 10^7 \mathrm{d}$	$224.57 \pm 11.55 \times 10^7 \mathrm{c}$		

All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

L. Zhao et al. / Pesticide Biochemistry and Physiology xxx (2017) xxx-xxx

Table 7TMV RdRp transcript levels in the systematic leaves by qRT-PCR assays in the curative treatment.

Sample names	Concentration (ng/µ	Concentration (ng/µL)						
	1 d	2 d	3 d (×10 ⁵)	4 d (×10 ⁵)	5 d (×10 ⁵)	6 d (×10 ⁵)		
Positive control	31.65 ± 0.04 a	1688.48 ± 8.01a	11.19 ± 0.04 a	28.24 ± 0.03 a	39.57 ± 0.13 a	$42.11 \pm 0.02a$		
Ningnanmycin	$8.31 \pm 0.34b$	$13.52 \pm 1.82 \mathrm{b}$	$0.32 \pm 0.003b$	$2.07 \pm 0.02b$	$11.55 \pm 0.79b$	$2.30 \pm 0.003b$		
Sec 2	$24.59 \pm 0.47c$	$460.66 \pm 28.31c$	$5.27 \pm 0.26c$	$12.25 \pm 0.46c$	$6.94 \pm 0.30c$	$2.29 \pm 0.05c$		
Sec 5	$4.42\pm0.12d$	$417.11 \pm 68.56c$	$3.58 \pm 0.009d$	$4.77\pm0.05d$	$11.27 \pm 0.30b$	$2.74\pm0.05d$		

All values are means \pm SE. Means in a column followed by different letters are significantly different at $P \le 0.05$.

3.4. Assaying anti-TMV activities across a concentration gradient

ID-ELISA showed the curative inhibition efficacies of Ses-2 and Ses-5 against TMV in K326 tobacco increased with compound concentration (Table 3). The overall anti-TMV activities of Ses-2 and Ses-5 increased with concentration.

3.5. Effect of Ses-2 and Ses-5 on TMV CP expression

Following the curative treatment, qRT-PCR assays revealed TMV CP transcript levels increased in the inoculated leaves with time, from 3 days post inoculation (dpi) to 6 dpi. However, transcript levels in the inoculated leaves treated with Ses-2 and Ses-5 were lower than those in the leaves of the inoculated leaves treated with ningnanmycin as well as in the positive control. TMV CP transcript levels in the systemic leaves treated with the two compounds and ningnanmycin were significantly less than those of the positive control (Tables 4, 5). Ses-2 and Ses-5 appeared to induce anti-TMV activities that could be transported to systemic leaves, as TMV CP expression was inhibited. TMV CP had been reported to be involved in long distance movement [16]. Ses-2 and Ses-5 did not disturb the long distance movement of TMV, but they did down regulate the expression and accumulation of TMV CP.

3.6. Effect of Ses-2 and Ses-5 on TMV RdRp expression

Following treatment to assess curative effects, qRT-PCR assays of TMV RdRp expression were conducted both in the inoculated and systemic leaves treated with ningnanmycin, Ses-2, Ses-5. Both Ses-2 and Ses-5 inhibited TMV expression (Tables 6, 7). However, the inhibition efficacy was only maintained for a relatively short time, i.e., for 1 day in the inoculated leaved treated with ningnanmycin and Ses-2 and 2 days under the Ses-5 treatment.

4. Discussion

Tithonia diversifolia can be grown under a range of different environmental conditions with respect to both climate and soil, it has high rates of dispersion and growth [32,33]. Some countries even used this plant as feed for dairy cows and goats [34,35]. Its extracts show a variety of biological activities [36–38]. The Ses-2 and Ses-5 compound each exhibited superior curative activity; hence, they may have applications as pesticides.

To further confirm the anti-TMV activities of Ses-2 and Ses-5, the relative content of TMV in inoculated and systematic leaves was measured using ID-ELISA. TMV infection of systemic leaves is the result of the long distance movement of virion from the inoculated leaves to systemic leaves. However, the significant decrease in TMV content in the systemic leaves indicates that Ses-2 and Ses-5 can induce systemic acquired resistance of the treated plants to inhibit TMV replication or coat protein synthesis.

The coat protein (CP) is required for systemic infection and viral replication [16–18]. RNA-dependent RNA polymerase (RdRp) mediates the genomic replication of TMV [13] and is also one of the key components necessary for cell-to-cell movement of the virus [14]. Anti-viral

compounds inhibited virus infecting always through inhibiting viral replication. Li et al. first reported seco-pregnane steroid and its glycosides can inhibit replication of TMV and result in the failure of systemic virus infection [20]. Srivastava et al. had found BDP-30, a glycoprotein extract from Root of Boerhaavia diffusa L., inhibited TMV infecting through affecting TMV-CP replication [23]. RdRp and CP are potential targets for studying on the effects of anti-viral compounds on TMV replication. The gRT-PCR assays of CP and RdRp expression, showed that these two sesquiterpene compounds, Ses-2 and Ses-5, which are extracted from Tithonia diversifolia, can inhibit the infection or accumulation of TMV in treated tobacco plants by interfering with the expression of TMV CP for 24-48 h, but cannot halt the replication and movement of TMV as well as ningnanmycin. As a curative agent, these two compounds may inhibit the virus. Ningnanmycin is a TMV inhibitor that is used widely to control viral diseases throughout agriculture in China [39]. Ningnanmycin might promote the systemic accumulation of pathogenesis-related proteins (PRs), which are markers of SAR in inhibition of TMV infection [21]. Although a definite inhibition mechanism of Ses-2 and Ses-5 against TMV has remained unknown, our results suggested that these tested bio-agents have the ability to control viral infections, and their curative effects were stronger than those of ningnanmycin. Accordingly, these two sesquiterpene compounds exhibited potency as a bio-pesticide against plant viruses.

5. Conclusion

The anti-TMV activities of sesquiterpene compounds Ses-2 and Ses-5 were evaluated. The curative effect of these tested compounds was better than ningnanmycin, while the inhibition effect of compound Ses-2 was higher than the other tested compounds. qRT-PCR assay of TMV CP and RdRp in the inoculated and systemic leaves treated with Ses-2 and Ses-5 indicated that these two compounds could inhibit the infection of TMV by interfering with the expression of TMV CP. This is the first published report on the anti-TMV activities of these sesquiterpene compounds.

Acknowledgments

This work was partially supported by grants from Yunling Scholar Program (2015 Zhangzhongkai) and Top Scientists Input Program of Yunnan (2013HA028), National Natural Science Foundation of China (No. 31470427), Yunnan Provincial Natural Science Foundation (2012CH007).

References

- J.R. Sanginés, U. Ramirez, J.G. Escobedo, et al., Effect of diet inclusion of *Tithonia diversifolia* on feed intake, digestibility and nitrogen balance in tropical sheep, Agrofor. Syst. 80 (2010) 295–302.
- [2] D.A. Chagas, R.B. Oliveira, B.A. Rocha, et al., Ethnobotany, chemistry, and biological activities of the genus *Tithonia* (Asteraceae), Chem. Biodivers. 9 (2012) 210–235.
- [3] C.D. Giacomo, L. Vanella, V. Sorrenti, et al., Effects of Tithonia diversifolia (Hemsl.) A. Gray extract on adipocyte differentiation of human mesenchymal stem cells, PLoS One 7 (2015).
- [4] W.X. Wang, K. Wang, J.M. Xu, et al., Antinematodal activity of the leaf essential oils of Cymbopogon citratus and Tithonia diversifolia, Nat. Prod. Res. Dev. 28 (2016) 1266–1272

ARTICLE IN PRESS

L. Zhao et al. / Pesticide Biochemistry and Physiology xxx (2017) xxx-xxx

- 6
- [5] S. Juliano, R. Sergio, H.G. Carly, et al., In vitro Leishmanicidal activities of sesquiterpene lactones from *Tithonia diversifolia* against *Leishmania braziliensis* promastigotes and amastigotes. Molecules 19 (2014) 6070–6079.
- [6] K.Y. Chiu, C. Chun, C.H. Chia, et al., Inhibition of growth, migration and invasion of human bladder cancer cells by antrocin, a sesquiterpene lactone isolated from Antrodia cinnamomea, and its molecular mechanisms, Cancer Lett. 373 (2016) 174-184
- [7] X.X. Li, Study on the Chemical Constituents and Biology Activities of *Tithonia diversifolia* AGray 2015.
- [8] E.P. Rybicki, A top ten list for economically important plant viruses, Arch. Virol. 160 (2015) 17–20.
- [9] S.K. Choi, J.Y. Yoon, B.N. Chung, Genome analysis and characterization of a tobacco mosaic virus isolate infecting balsam (*Impatiens balsamina*), Arch. Virol. 154 (2009) 881–885.
- [10] Y. Luo, D.D. Zhang, X.W. Dong, et al., Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus, FEMS Microbiol. Lett. 313 (2010) 120–126.
- [11] E.A. Nassar, K.A. Doug, M.E. Osman, et al., Characterization and elimination of a TMV isolate infecting *Chrysanthemum* plants in Egypt, Int. J. Virol. 8 (2012) 14–26.
- [12] M.S. Padmanabhan, S.P. Goregaoker, S. Golem, et al., Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development, J. Virol. 79 (2005) 2549–2558.
- [13] C.M. Deom, M.J. Oliver, R.N. Beachy, The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement, Science 237 (1987) 389–394.
- [14] M. Heinlein, H.S. Padgett, J.S. Gens, et al., Changing patterns of localization of the to-bacco mosaic virus movement protein and replicase to the endoplasmic reticulum and microtubules during infection, Plant Cell 10 (1998) 1107–1120.
- [15] A. Callaway, E.T. Gillock, T.L. Sit, et al., The multifunctional capsid proteins of plant RNA viruses, Annu. Rev. Phytopathol. 39 (2001) 419–460.
- [16] M.E. Hilf, W.O. Dawson, The tobamovirus capsid protein functions as a host-specific determinant of long-distance movement, Virology 193 (1993) 106–114.
- [17] S. Asurmendi, R.H. Berg, J.C. Koo, et al., Coat protein regulates formation of replication complexes during tobacco mosaic virus infection, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 1415–1420.
- [18] S.A. Siddiqui, C. Sarmiento, S. Valkonen, et al., Suppression of infectious TMV genomes expressed in young transgenic tobacco plants, Mol. Plant-Microbe Interact. 20 (2007) 1489–1494.
- [19] W.O. Dawson, P. Bubrick, G.L. Grantham, Modifications of the tobacco mosaic virus coat protein gene affecting replication, movement, and symptomatology, Phytopathology 78 (1988) 783–789.
- [20] Y.M. Li, L.H. Wang, S.L. Li, et al., Seco-pregnane steroids target the subgenomic RNA of alphavirus-like RNA viruses, PNAS 104 (2007) 8083–8808.
- [21] Y.G. Han, Y. Luo, S.R. Qin, et al., Induction of systemic resistance against tobacco mosaic virus by Ningnanmycin in tobacco, Pestic. Biochem. Physiol. 111 (2014) 14–18.
- [22] X.Y. Li, Z. Chen, L.H. Jin, et al., New strategies and methods to study interactions between tobacco mosaic virus coat protein and its inhibitors, Int. J. Mol. Sci. 17 (2016) 1.11

- [23] S. Shalini, V. Hn, S. Aparana, et al., BDP-30, a systemic resistance inducer from Boerhaavia diffusa L., suppresses TMV infection, and displays homology with ribosomein activating proteins, J. Biosci. 40 (2015) 125–135.
- [24] H.T. Fan, B.A. S, P.S. Bhadury, L.H. Jin, et al., Antiviral activity and mechanism of action of novel thiourea containing chiral phosphonate on tobacco mosaic virus, Int. I. Mol. Sci. 12 (2011) 4522–4535.
- [25] Q.Y. Wang, L.L. Deng, J.J. Liu, et al., Schisanhenol derivatives and their biological evaluation against tobacco mosaic virus (TMV), Fitoterapia 101 (2015) 117–124.
- [26] J. Wang, G.H. Yu, Y.H. Li, et al., Inhibitory effects of sulfated lentinan with different degree of sulfation against tobacco mosaic virus (TMV) in tobacco seedlings, Pestic. Biochem. Physiol. 122 (2015) 38–43.
- [27] L. Zhao, X.G. Hao, Y.F. Wu, Inhibitory effect of polysaccharide peptide (PSP) against Tobacco mosaic virus (TMV), Int. J. Biol. Macromol. 75 (2015) 474–478.
- [28] G.V. Gooding, T.T. Hebert, A simple technique for purification of tobacco mosaic virus in large quantities, Phytopathology 57 (1967) 1285–1289.
- [29] S.D. Yeh, D. Gonsalves, Purification and immunological analysis of cylindrical-inclusion protein induced by papaya ringspot virus and watermelon mosaic virus I, Phytopathology 74 (1984) 1273–1278.
- [30] N.C. Baruah, R.P. Sharma, K. Madhusudanan, et al., Sesquiterpene lactones of *Tithonia diversifolia*. Stereochemistry of the tagitinins and related compounds, J. Org. Chem. 44 (11) (1979) 1831–1835.
- [31] P.S. Pereira, D.A. Dias, W. Vichnewski, et al., Sesquiterpene lactones from Brazilian *Tithonia diversifolia*, Phytochemistry 45 (7) (1997) 1445–1448.
- [32] J.I. Muoghalu, Growth, reproduction and resource allocation of *Tithonia diversifolia* and *Tithonia rotundifolia*, Weed Res. 48 (2008) 157–162.
- [33] J.I. Muoghalu, D.K. Chuba, Seed germination and reproductive strategies of *Tithonia diversifolia* (Hemsl.) Gray and *Tithonia rotundifolia* (P.M) Blake, Appl. Ecol. Environ. Res. 3 (2005) 39–46.
- [34] S.R. Rafael, A.T. Stephanie, P.S. João, et al., *Tithonia diversifolia* as a supplementary feed for dairy cows, PLoS One 11 (2016).
- [35] F. Tendonkeng, B.Z. Fogang, C. Sawa, et al., Inclusion of *Tithonia diversifolia* in multinutrient blocks for WestAfrican dwarf goats fed *Brachiaria* straw, Trop. Anim. Health Prod. 46 (2014) 981–986.
- [36] C.L. Juang, F.S. Yang, M.S. Hsieh, et al., Investigation of anti-oxidative stress in vitro and water apparent diffusion coefficient in MRI on rat after spinal cord injury in vivo with *Tithonia diversifolia* ethanolic extracts treatment, BMC Complement. Altern. Med. 14 (2014) 447.
- [37] X.J. Tian, Y.M. Shen, H.Z. Tao, et al., Allelopathy of invasive *Tithonia diversifolia* on *Bidens pilosa*, J. Ecol. Environ. Sci. 24 (2015) 1128–1131.
- [38] O.C. Ejelonua, O.O. Elekofehintia, I.G. Adanlawob, *Tithonia diversifolia* saponin-blood lipid interaction and its influence on immune system of normal wistar rats, Biomed. Pharmacother. 87 (2017) 589–595.
- [39] G.X. Xiang, H.Z. Hu, J.R. Chen, et al., A new agricultural antibiotic-ningnanmycin, Acta Microbiol Sin. 36 (1995) 368–374.