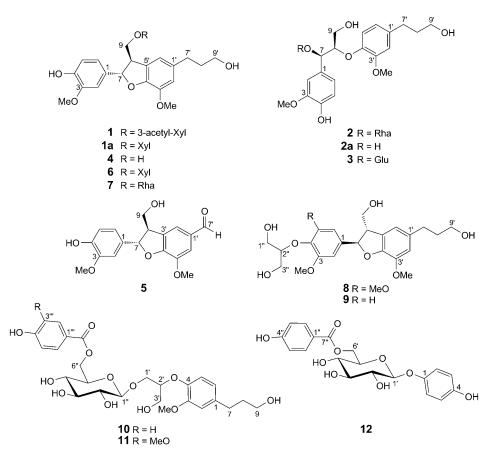
Two New Lignans and Anti-HBV Constituents from Illicium henryi

by Ji-Feng Liu^a)^b), Zhi-Yong Jiang^{*a}), Chang-An Geng^a)^b), Quan Zhang^a)^b), Yao Shi^c), Yun-Bao Ma^a), Xue-Mei Zhang^a), and Ji-Jun Chen^{*a})

 ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China (phone: +86-871-5223265; fax: +86-871-5223265; e-mail: chenjj@mail.kib.ac.cn, jiangzy@mail.kib.ac.cn)
^b) Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China


°) Hawley & Hazel Chemical (ZS) Co., Ltd, Zhongshan 528411, P. R. China

Two new lignans, dihydrodehydrodiconiferyl alcohol 9-O- β -D-(3"-O-acetyl)-xylopyranoside (1) and *threo*-4,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan 7-O- α -rhamnopyranoside (2) were isolated from *Illicium henryi*, together with ten known compounds, **3**–**12**. Their structures were elucidated by extensive spectroscopic analyses. The anti-hepatitis B virus (anti-HBV) activity of compounds **1**–**12** inhibiting HBV surface antigen (HBsAg) and HBV e antigen (HBeAg) secretion on Hep G2.2.15 cell line was evaluated. (–)-Dihydrodehydrodiconiferyl alcohol (**4**) showed moderate inhibitory activity on both HBsAg and HBeAg secretion with IC_{50} values of 0.06 and 0.53 mM, respectively.

Introduction. – The genus *Illicium* belongs to the single-genus family Illiciaceae. Previous chemical investigations on this genus yielded prenylated C_6 - C_3 compounds, neolignans, and a large number of unique sesquiterpene lactones exhibiting neurotoxic and neurotrophic activities [1–3]. From a chemotaxonomic point of view, the *Illicium* species are interesting sources, rich in biosynthetically unique sesquiterpenes which are considered to be characteristic chemical markers [4]. In addition, the prenylated C_6 - C_3 compounds, referred to as phytoquinoids, are also considered to be characteristic constituents, some of which are found to increase choline acetyltransferase activity [5]. *I. henryi* is a shrub distributed in the southwestern part of China, and its bark and roots have been used as a folk-medicinal herb for dispelling wind-evil and assuaging pain [6]. In the previous studies, sesquiterpene lactones [7] and flavonoids [8] had been isolated from the title plant. Here, we describe the isolation and structure elucidation of two new lignans, **1** and **2**, along with ten known compounds, **3**–**12**, which were isolated from the EtOH extract of the stems and roots of *I. henryi* for the first time, and the assessment of their anti-HBV activity.

Results and Discussion. – 1. *Structure Elucidation*. Compound **1** was obtained as white amorphous powder. HR-ESI-MS showed the $[M + Cl]^-$ ion peak at m/z 569.1775 (calc. 569.1789) in accordance with the molecular formula $C_{27}H_{34}O_{11}$, indicating eleven degrees of unsaturation. The IR spectrum showed the presence of OH (3430 cm⁻¹) and CO (1733 cm⁻¹) groups, as well as aromatic rings (1610, 1500, 1464 cm⁻¹). The ¹H-NMR spectrum displayed *ABX* spin-system signals at δ (H) 6.97 (*s*, 1 H), 6.83 (*dd*,

^{© 2011} Verlag Helvetica Chimica Acta AG, Zürich

J=8.0, 1.6, 1 H), and 6.74 (overlapped, 1 H), aromatic H-atom signals at δ (H) 6.76 (*s*, 1 H), 6.72 (*s*, 1 H), two MeO signals at δ (H) 3.81 (*s*), 3.84 (*s*), and an anomeric H-atom signal at δ (H) 4.38 (*d*, J=7.5). The ¹³C-NMR (DEPT; *Table 1*) spectrum revealed the presence of three Me, five CH₂, and twelve CH groups, and eight quaternary C-atoms. The CO C-atom signal at δ (C) 172.6 and a Me signal at δ (C) 21.1 suggested the presence of an AcO moiety in compound **1**. Analysis of NMR spectra revealed that compound **1** was almost identical with dihydrodehydrodiconiferyl alcohol 9-*O*- β -D-xylopyranoside (**6**) [9], except for the presence of the signals due to an AcO moiety. The cross-peak between H–C(3") and C(1"") (δ (C) 172.6) observed in the HMBC spectrum indicated that the AcO group was linked to C(3") (*Fig.*). Hydrolysis of compound **1** with 1M NaOH gave **1a**. The NMR data of **1a** were identical to those of **6**. The value of coupling constant of H–C(7)¹) (J=6.4 Hz) along with the ROESY correlation H–C(7)/H–C(9) (*Fig.*) indicated that H–C(7) and H–C(8) were in a *trans*-configuration [10][11]. The β -configuration of the anomeric C-atom was established by

¹⁾ Numbering as indicated in the *Formulae*; for systematic names, *cf.* the *Exper. Part.*

Position ¹)	1		2		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$	
1	_	129.5 (s)	_	129.7 (s)	
2	6.97 (s)	110.6(d)	7.33 (d, J = 1.5)	112.5(d)	
3	_	149.0 (s)	_	148.6(s)	
4	_	147.4(s)	_	148.1(s)	
5	6.74 (overlapped)	116.0(d)	7.21 (d, J = 8.1)	116.2(d)	
6	6.83 (dd, J = 8.0, 1.6)	119.7 (d)	7.14 (d, J = 8.0)	122.1(s)	
7	5.53 (d, J = 6.4)	89.0(d)	5.69(d, J = 5.4)	76.2(d)	
8	3.57–3.61 (<i>m</i>)	52.9 (d)	4.96 - 4.99(m)	84.4(d)	
9	3.88-3.92(m), 3.27-3.30(m)	72.2(t)	4.29-4.30 (<i>m</i>), 3.38-3.40 (<i>m</i>)	61.0 (<i>t</i>)	
1′	_	137.0 (s)	_	136.4 (s)	
2′	6.72 (s)	114.0(d)	6.85 (d, J = 1.7)	113.4 (d)	
3′	_	145.2(s)	_	150.9 (s)	
4′	_	147.4 (s)	_	146.9 (s)	
5'	_	134.5 (s)	7.25 (d, J = 8.2)	117.3 (d)	
6′	6.76 (s)	118.0(t)	6.77 (dd, J = 8.2, 1.6)	121.0(d)	
7′	2.61(t, J=7.6)	32.9 (t)	2.76(t, J=7.3)	32.4 (t)	
8'	1.78 - 1.82 (m)	35.8 (t)	1.97 - 2.04 (m)	35.7 (t)	
9′	3.56(t, J=6.4)	62.2(t)	3.86(t, J=6.4)	61.4 (<i>t</i>)	
1″	4.38(d, J=7.5)	104.6(d)	5.36 (br. s)	98.4(d)	
2"	3.34–3.36 <i>(m)</i>	73.0(d)	4.61 - 4.65(m)	73.0(d)	
3″	4.85 - 4.87(m)	78.7(d)	4.59-4.61 (<i>m</i>)	72.5(d)	
4''	3.58–3.63 (<i>m</i>)	69.4(d)	4.30–4.33 (<i>m</i>)	74.2(d)	
5″	3.98-4.02(m), 3.81-3.84(m)	66.7(t)	4.67 - 4.71(m)	70.5(d)	
6''	-	-	1.68 (d, J = 6.1)	18.9 (q)	
1‴	_	172.6(s)	_	-	
2'''	2.10 (s)	21.1(q)	-	_	
MeO	3.81 (s)	56.4(q)	3.60(s)	55.7 (q)	
MeO	3.84 (s)	56.7 (q)	3.65 (s)	55.8 (q)	

Table 1. ¹*H*- and ¹³*C*-*NMR Data of Compounds* **1** and **2**. Recorded at 400 and 100 MHz, respectively, in CD₃OD; δ in ppm, *J* in Hz.

the coupling constant of H–C(1") (J=7.5 Hz) as observed in the ¹H-NMR spectrum [9]. Thus, compound **1** was deduced as dihydrodehydrodiconiferyl alcohol 9-*O*- β -D-(3"-*O*-acetyl)xylopyranoside.

Compound **2** was isolated as white amorphous powder. HR-ESI-MS exhibited the $[M+Cl]^-$ ion peak at m/z 559.1961 (calc. 559.1946), indicating the molecular formula $C_{26}H_{36}O_{11}$. The IR spectrum suggested the presence of a OH group (3416 cm⁻¹) and an aromatic ring (1607, 1513, 1454 cm⁻¹). The ¹H-NMR spectrum displayed the signals of one C₃ unit at δ (H) 2.01 (m, CH₂(8')), 2.76 (t, J=7.3, CH₂(7')), and 3.86 (t, J=6.4, CH₂(9')), two MeO groups (δ (H) 3.60 (s), 3.65 (s)), two CH groups (δ (H) 4.98 (m, H–C(8)), 5.69 (d, J=5.4, H–C(7)), a rhamnosyl moiety, and six aromatic H-atoms (two *ABX*-type spin systems). The ¹³C-NMR (DEPT; *Table 1*) spectra revealed the presence of three Me, four CH₂, and 13 CH groups, and six quaternary C-atoms, suggesting the presence of two C₆-C₃ units and a sugar moiety. Comparing the NMR data of compound **2** with those of *threo*-4,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan 7-O- β -D-glucopyranoside (**3**) [12], indicated that they were similar except

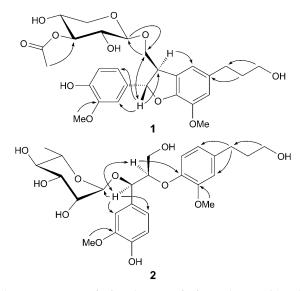


Figure. Key HMBC (\rightarrow) and ROESY (\leftrightarrow) correlations of 1 and 2

for the signals of the sugar moiety. The acid hydrolysis of compound **2** with 2m HCl afforded rhamnose and the aglycone **2a**. The rhamnose was identified by HP-Si-TLC with authentic sample. The α -configuration of the rhamnosyl residue was confirmed by ¹H,¹³C-NMR data [13][14]. The configuration of C(7) and C(8) was determined as *threo* based on the large coupling constant (J(7,8) = 7.2) in the ¹H-NMR spectrum of **2a** [12], which was also supported by the ROESY correlation of H–C(7) and H–C(8), as shown in the *Figure*. Consequently, the structure of compound **2** was determined to be *threo*-4,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan 7-O- α -rhamnopyranoside.

The known compounds, *threo*-4,9,9'-trihydroxy-3,3'-dimethoxy-8-*O*-4'-neolignan 7-*O*- β -D-glucopyranoside (3) [12], (-)-dihydrodehydrodiconiferyl alcohol (4) [15], ficusal (5) [16], dihydrodehydrodiconiferyl alcohol 9-*O*- β -D-xylopyranoside (6) [9], dihydrodehydrodiconiferyl alcohol 9-*O*- α -L-rhamnopyranoside (7) [17], sakuraresinol (8) [18], 2,3-dihydro-2-[3'-methoxy-4'-(1",3"-dihydroxy-2"-propyloxy)phenyl]-3-(hydroxymethyl)-7-methoxybenzofuran-5-propanol (9) [10], 4-*O*-[2'-hydroxy-1'-(hydroxymethyl)ethyl]dihydroconiferyl alcohol 6"-(*p*-hydroxybenzoyl)- β -D-glucopyranoside (10) [19], 4-*O*-[2'-hydroxy-1'-(hydroxymethyl)ethyl]dihydroconiferyl alcohol vanilloyl-glucoside (11) [13], and breynioside A (12) [20] were identified by comparison of their spectroscopic data with those reported.

2. Anti-HBV Assay. The isolated compounds 1-12 were evaluated for their anti-HBV activity on the HBV-transfected Hep G 2.2.15 cell line *in vitro* according to our previous report [21]. The results including their activities and cytotoxicities were compiled in *Table 2*. The results show that the benzofuran lignans exhibited anti-HBV activities with reduced cytotoxicities for the glycoside derivatives **1**, **6**, and **7**. (–)-Dihydrodehydrodiconiferyl alcohol (**4**) was the most active showing moderate inhibitory activity ($IC_{50}=0.06 \text{ mM}$, SI=8.8) on HBV surface antigen (HBsAg) secretion in Hep G2.2.15 cells. The new compound dihydrodehydrodiconiferyl alcohol 9-O- β -D-(3"-O-acetyl)xylopyranoside (1) possessed weak activity against HBsAg secretion with an IC_{50} value of 0.58 mM and CC_{50} value of 0.92 mM.

Compounds	<i>СС</i> ₅₀ [mм]	HBsAg ^b)		HBeAg ^c)	
		<i>IC</i> ₅₀ [mм]	SI ^d)	<i>IC</i> ₅₀ [mм]	SI ^d)
1	0.92	0.58	1.6	>2.40	< 0.4
2	> 1.85	>1.85	-	>1.85	-
3	1.15	0.59	1.9	0.80	1.4
4	0.53	0.06	8.8	0.50	1.1
5	0.27	0.15	1.8	0.52	0.5
6	>2.15	1.67	>1.3	>2.15	-
7	1.76	0.93	1.9	2.45	0.7
8	0.95	0.95	1.0	>2.59	< 0.4
9	4.52	3.62	1.2	4.56	1.0
10	>1.93	>1.93	-	>1.93	-
11	>2.87	1.65	>1.7	>2.87	-
12	1.17	1.28	0.9	1.43	0.8
3TC ^e)	28.0	10.0	2.8	20.0	1.4

Table 2. Anti-HBV Activities of Compounds 1-12^a)

^a) All values are the means of two independent experiments. ^b) HBsAg: HBV surface antigen. ^c) HBeAg: HBV e antigen. ^d) CC_{50} : 50% Cytotoxic concentration, IC_{50} : 50% inhibition concentration against HBV synthesis, $SI = CC_{50}/IC_{50}$. ^e) 3TC: Lamivudine, an antiviral agent used as a positive control.

This work was supported by National Science Foundation of China for Distinguished Young Scholars (No. 81025023), Xibu Zhiguang Joint-Scholarship of Chinese Academy of Sciences, and the External Cooperation Program of Chinese Academy of Sciences (No. GJHZ200818) and CAS-Croucher Foundation (CAS-CF07/08.SC03). We thank the staff of the analytical group of the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

Experimental Part

General: Column chromatography (CC): Silica gel (SiO₂; 200–300 mesh; Qingdao Meigao Chemical Company, Qingdao, P. R. China), D_{101} macroporous resin (*Tianjin Pesticide Chemical Company*, Tianjin, P. R. China), Lichrospher Rp-18 gel (40–63 µm; Merck Chemicals Ltd., Germany), and Sephadex LH-20 (20–150 µm; Pharmacia Fine Chemical Co. Ltd., Sweden). Prep. HPLC: Waters 600 (Waters, Milford, USA), with a Waters Xterra Prep RP-18 (7.8 × 300 mm, 10 µm) column (Waters, Ireland). Optical rotations: Horiba SEPA-300 polarimeter (Horiba, Tokyo, Japan). UV Spectra: Shimadzu UV-210A spectrophotometer (Shimadzu, Kyoto, Japan). IR Spectra: Bio-Rad FTS-135 spectrometer (Bio-Rad, California, USA); as KBr pellets. 1D- and 2D-NMR spectra: Bruker AM-400 NMR and DRX-500 spectrometer (VG, GB-Manchester) and API Qstar Pulsar (Applied Biosystems, Foster City, USA); in m/z.

Plant Material. The stems and roots of *Illicium henryi* DIELS. were collected in Wenshan, Yunnan Province, P. R. China, in July 2006, and identified by Prof. *Ligong Lei* from Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (2006-07-01) was deposited with the Laboratory of Antivirus and Natural Medicinal Chemistry, Kunming Institute of Botany.

Extraction and Isolation. Dried and powdered plant material (9 kg) was extracted with 95% EtOH (401) under reflux for three times, 2 h for each time. The extract was concentrated in vacuo, and then partitioned between CHCl₃, BuOH, and H₂O successively. The BuOH fraction (200 g) was dissolved in H₂O. The H₂O-soluble fraction was passed through a D_{101} macroporous adsorptive resin column and was eluted with $H_2O/EtOH(100:0, 80:20, 60:40, 40:60, 20:80, 0:100(v/v))$ to yield ten fractions, Frs. 1–10. The Fr. 3 (10 g) was repeatedly subjected to CC (SiO₂ (5×41 cm, 350 g); CHCl₃/Me₂CO 90:10, 80:20, 70:30, 50:50, 30:70 (v/v; each 41) to give five fractions, Frs. 3a-3e. By further purification on Rp-18 gel $(2.5 \times 33 \text{ cm}, 120 \text{ g})$ with MeOH/H₂O (30:70, 40:60, 50:50, 60:40 (v/v; each 500 ml), compounds 1(15 mg), 2 (13 mg), and 6 (40 mg) were obtained from Fr. 3b. Fr. 4 (8 g) was subjected to CC (Rp-18 gel $(2.5 \times 33 \text{ cm}, 120 \text{ g})$; MeOH/H₂O 10:90, 80:20, 40:60, 60:40, 80:20, 0:100 (ν/ν)) to afford seven fractions, Frs. 4a-4g. Fr. 4b was subjected to CC (SiO₂ (2 × 35 cm, 50 g); CHCl₃/MeOH 90:10) to yield compound 7 (9 mg). Fr. 4f was separated by repeated SiO₂ CC to yield compound 3 (12 mg) eluted with CHCl₃/MeOH 90:10, followed by AcOEt/MeOH 95:5. Fr. 5 (12 g) was subjected to CC (SiO₂ ($5 \times$ 35 cm, 260 g); CHCl₃/Me₂CO 100:0, 90:10, 80:20 (ν/ν); each 31) to afford five fractions, Frs. 5a-5e. Fr. 5a (1.2 g), Fr. 5b (1 g), and Fr. 5d (1.8 g) were further separated by CC (SiO₂ (3×25 cm, 70 g); petroleum ether (PE)/Me₂CO 75:25, PE/AcOEt 60:40, and CHCl₃/Me₂CO 85:15, resp.) to furnish compounds 4 (6 mg), 5 (8 mg), and 8 (8 mg). Fr. 7 (5 g) was further separated by CC (SiO₂ (3×30 cm, 85 g); PE/Me₂CO 85:15, 70:30, 50:50, 30:70 (v/v); each 700 ml) to give six fractions, Frs. 7a-7f. Fr. 7c was further purified by CC (*Rp-18* (2.5×33 cm, 120 g); MeOH/H₂O 65:35) to provide compound **10** (11 mg). Fr. 7d (50 mg) and Fr. 7f (50 mg) were further purified by CC (Sephadex LH-20 (1.4×150 cm, 48 g), MeOH), then purified by semi-prep. HPLC, using a Waters XTerra Prep RP-18 column, eluted with MeOH/H₂O 40:60 (flow rate 4.5 ml/min; detection at 254 nm) to obtain compounds 11 (4 mg, t_R 20 min) and **12** (19 mg, t_R 35 min), resp.

Dihydrodehydrodiconiferyl Alcohol 9-O-β-D-(3"-O-*Acetyl*)*xylopyranoside* (=[(2\$,3R)-2,3-*Dihydro-2-(4-hydroxy-3-methoxyphenyl*)-5-(3-hydroxypropyl)-7-methoxy-1-benzofuran-3-yl]methyl 3-O-*Acetyl*-β-D-*xylopyranoside*; **1**). White amorphous powder. [α]_{2⁷⁹}²⁻⁹ = -4.6 (*c*=0.215, MeOH). UV (CHCl₃): 282 (3.73). IR (KBr): 3430, 2934, 1733, 1610, 1518, 1500, 1464, 1244, 1213, 1039, 974, 755. ¹H- and ¹³C-NMR: see *Table 1.* HR-ESI-MS: 569.1775 ([M+Cl]⁻, C₂₇H₃₄ClO₁₁; calc. 569.1789).

threo-4,9,9'-Trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan 7-O- α -Rhamnopyranoside (=(1R,2R)-3-Hydroxy-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2-methoxyphenoxy]propyl 6-Deoxy- α -L-mannopyranoside; **2**). White amorphous powder. [a]₂₆₋₁⁶⁻¹ = -36.4 (c=0.055, MeOH). UV (CHCl₃): 224 (4.16), 280 (3.71). IR (KBr): 3416, 2930, 1607, 1513, 1454, 1273, 1129, 1035, 983, 812. ¹H- and ¹³C-NMR: see *Table 1*. FAB-MS (neg.): 523 ([M-H]⁻), 359, 329, 283. HR-ESI-MS: 559.1961 ([M+ Cl]⁻, C₂₆H₃₆ClO₁₁; calc. 559.1946).

Hydrolysis of Compound **1**. 2M NaOH (1 ml) was added to a soln. of **1** (7 mg) in MeOH (1 ml), which was stirred for 12 h at r.t. The mixture was diluted with 1M HCl (5 ml) and extracted with AcOEt (3×5 ml). The AcOEt layer was washed with brine (10 ml), dried (Na₂SO₄), and concentrated under reduced pressure to give a crude residue, which was purified by CC (SiO₂; CHCl₃/MeOH 90:10) to yield **1a** (3 mg).

Hydrolysis of Compound **2**. The mixture of **2** (6 mg), 2M HCl (1 ml), and MeOH (1 ml) was heated in a water bath at 50° for 12 h. After reaction, the mixture was diluted with H₂O (10 ml) and extracted with AcOEt (3×5 ml). The AcOEt layer was washed with brine (10 ml) and dried (MgSO₄), and concentrated under reduced pressure to give a crude residue which was purified by CC (SiO₂; CHCl₃/ MeOH 95:5) to provide **2a** (2 mg). The aq. layers were evaporated to dryness under reduced pressure. The sugar was identified to be rhamnose by comparison with an authentic sample on HP-Si-TLC.

REFERENCES

- [1] Y. Fukuyama, N. Shida, M. Kodama, Plant Med. 1993, 59, 181.
- [2] R. Yokoyama, J.-M. Huang, C.-S. Yang, Y. Fukuyama, J. Nat. Prod. 2002, 65, 527.
- [3] Y.-N. Liu, X.-H. Su, C.-H. Huo, X.-P. Zhang, Q.-W. Shi, Y.-C. Gu, Chem. Biodiversity 2009, 6, 963.
- [4] W.-Z. Tang, S.-G. Ma, S.-S. Yu, J. Qu, Y.-B. Liu, J. Liu, J. Nat. Prod. 2009, 72, 1017.

- [5] X.-F. Wu, Y. Li, H.-N. Lu, S.-S. Yu, S.-G. Ma, J. Liu, J. Asian Nat. Prod. Res. 2009, 11, 1056.
- [6] Z.-Y. Wu, 'Xinhua Bencao Gangyao', Shanghai Science & Technology Press, Shanghai, China, 1988, p. 54.
- [7] J.-S. Liu, R.-Q. Zhou, Acta Pharm. Sin. 1988, 23, 221.
- [8] D.-L. Xie, D.-Y. Kong, Chin. Tradit. Herbal Drugs 1990, 21, 15.
- [9] M.-A. Ouyang, J. Huang, Q.-W. Tan, J. Asian Nat. Prod. Res. 2007, 9, 487.
- [10] M.-J. Fang, C.-K. Lee, Y.-S. Cheng, *Phytochemistry* **1992**, *31*, 3659.
- [11] I. Kouno, Y. Yanagida, S. Shimono, M. Shintomi, C.-S. Yang, Phytochemistry 1993, 32, 1573.
- [12] N. Matsuda, M. Kikuchi, Chem. Pharm. Bull. 1996, 44, 1676.
- [13] M. Zhao, N. Yang, B. Yang, Y. Jiang, G. Zhang, Food Chem. 2007, 105, 1480.
- [14] Y.-H. Wang, J.-H. Wang, H.-P. He, H. Zhou, X.-W. Yang, C.-S. Li, X.-J. Hao, J. Asian Nat. Prod. Res. 2008, 10, 25.
- [15] X.-J. Yang, M.-S. Wang, N.-L. Wang, S.-C. Chan, X.-S. Yao, J. Asian Nat. Prod. Res. 2007, 9, 583.
- [16] Y.-C. Li, Y.-H. Kou, Chem. Pharm. Bull. 2000, 48, 1862.
- [17] J.-F. Xu, D.-H. Cao, N.-H. Tan, Z.-L. Liu, Y.-M. Zhang, Y.-B. Yang, J. Asian Nat. Prod. Res. 2006, 8, 181.
- [18] K. Yoshinari, N. Shimazaki, Y. Sashida, Y. Mimaki, Phytochemistry 1990, 29, 1675.
- [19] I. Kouno, Y. Yanagida, S. Shimono, M. Shintomi, C.-S. Yang, Chem. Pharm. Bull. 1992, 40, 2461.
- [20] H. Morikawa, R. Kasai, H. Otsuka, E. Hirata, T. Shinzato, M. Aramoto, Y. Takeda, Chem. Pharm. Bull. 2004, 52, 1086.
- [21] Z.-Y. Jiang, X.-M. Zhang, F.-X. Zhang, N. Liu, F. Zhao, J. Zhou, J.-J. Chen, Planta Med. 2006, 72, 951.

Received April 26, 2010