Short Note

(Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, P. R. China)

A new bitter diterpenoid from Sarcodon scabrosus

BING-JI MA and JI-KAI LIU*

(Received 17 November 2004/Accepted 29 November 2004)

The new cyathane-type diterpenoid sarcodonin I was isolated from the fruiting bodies of the basidiomycete *Sarcodon scabrosus*. Its structure was determined on the basis of spectroscopic means, including 2D-NMR (HMBC, HMQC, ROESY, ¹H, ¹H-COSY).

Sarcodon scabrosus is a mushroom belonging to the family Thelephoraceae and has a bitter taste. Diterpenoids, including sarcodonins A–H, scabronines A–F and scabronines L and M have previously been isolated from this mushroom as the bitter principles (SHIBATA et al. 1989, OHTA et al. 1998, KITA et al. 1998). All these diterpenoids posses a cyathane skeleton consisting of angularly condensed five-, six and seven-membered rings and show stimulating activity of nerve growth factor (NGF)-synthesis in vitro. In continuing our studies on basidiomycete-derived bioactive secondary metabolites, the chemical constituents of the mushroom Sarcodon scabrosus from Yunnan, China were investigated. This report describes the structural elucidation of a new compound named sarcodonin I.

The entire freshly collected fruiting bodies of *S. scabrosus* (dry weight after extraction 150 g) were immersed in 95% EtOH and left at room temperature for several days. Then the EtOH extract was decanted and evaporated *in vacuo*. The residue was extracted with CHCl₃ for 4 times. The extract (70 g) was fractionated by column chromatography (silica gel, eluted with petroleum ether/acetone 9:1, 8:2, 7:3, 6:4, v/v). The fraction eluted by petroleum ether/acetone (6:4, v/v) was submitted for further purification by reverse phase column chromatography (RP-8, MeOH/H₂O 6:4) to give sarcodonin I (6 mg).

Sarcodonin I was obtained as a yellow oil, $[\alpha]^{20}_{D}$ = +374.8° (c = 0.2, MeOH). High-resolution ESI-MS (pos.) gave an ion peak at m/z 355.1884 (m/z 355.1885 calculated for $C_{20}H_{28}O_4Na$). ¹H-NMR spectrum of sarcodonin I showed the hydrogens signals of two secondary methyls and two tertiary methyls at δ 0.94 (3H, d, J = 6.8 Hz) and δ 1.01 (3 H, s), respectively (Table 1). The former methyl hydrogen signal and another methylene protons (3.49, 2 H, m) were spin-coupled with a methine hydrogen signal at δ 3.12 (1 H, m), demonstrating the presence of an isolated system –CH(CH₃)–CH₂OH. ¹³C-NMR of sarcodonin I showed one oxymethine and two oxymethylene carbons (δ 74.4, CH; 66.1, CH₂; 65.3, CH₂), and one tetrasubstituted doubled bond (δ 144.6, C; 142.7, C) and two trisubstituted double bonds (δ 139.7, C; 121.3, CH; 145.6, C; 153.9, CH). Based on the above partial structures, the construction of the molecular framework was deduced from 'H-'H COSY, HMQC and HMBC spectra. Compared with the NMR data of sarcodonin A (SHIBATA *et al.* 1989), the gross structure was given as shown in Fig. 1.

The relative stereochemistry of sarcodonin I was established by ROESY experiments. ROESY corrections at H-14/H-16, and H-14/H-7 α ,H-8 α indicated that these protons were situated in the same side. In addition, ROESY correction at H-7 β /H-8 β confirmed the structure of sarcondonin I represented as Fig. 1.

^{*} Corresponding author: JI-KAI LIU; e-mail: jkliu@mail.kib.ac.cn

Table	1			
NMR	spectral data of sarcondonin	I (δ ppm,	CD ₃ OD,	400 MHz)

position	$\delta_{ m H}$	$\delta_{ m C}$	
1	1.65 (m), 2.06 (m)	31.8	_
2	$\beta 2.06 \text{ (m)}$	29.8	
	α 2.38 (m)		
3	, ,	144.6	
3 4 5 6 7		142.7	
5		139.7	
6		48.5	
7	$\beta 1.50 (m)$	33.8	
	$\alpha 2.39 (m)$		
8	$\beta 2.15 (m)$	34.6	
	$\alpha 1.35(m)$		
9		55.8	
10	6.26 (d, J = 8.0 Hz)	121.3	
11	6.78 (dd, J = 1.7, 8.0 Hz)	145.6	
12		153.9	
13	2.95 (dd, J = 7.2, 12.0 Hz)	29.9	
14	3.68 (d, J = 7.2 Hz)	74.7	
15	9.39 (s)	194.5	
16	1.01 (s)	26.8	
17	3.33 (d, J = 10.6 Hz)	65.3	
	3.40 (d, J = 10.6 Hz)		
18	3.12 (m)	35.9	
19	3.49 (m)	66.1	
20	0.94 (d, J = 6.8 Hz)	16.2	

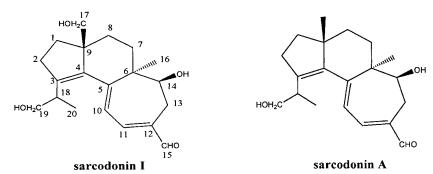


Fig. 1 The structures of sarcodonins I and A

Acknowledgement

This project was supported by the National Natural Science Foundation of China (30470027 and 30225048).

References

KITA, T., TAKAYA, Y. and OSHIMA, Y., 1998. Scabronines B, C, D, E and F, novel diterpenoids showing stimulating activity of nerve growth factor-synthesis, from the mushroom *Sarcodon scabrosus*. Tetrahedron, **54**, 11877–11886.

330 BING-JI MA and JI-KAI LIU

Ohta, T., Kita, N., Kobayashi, N., Obara, Y., Nakahata, N., Ohizumi, Y., Takaya, Y. and OSHIMA, Y., 1998. Scabronine A, a novel diterpenoid having potent inductive activity of the nerve growth factor synthesis, isolated from the mushroom, Sarcodon scabrosus. Tetrahedron Lett., 39, 6229 - 6232.

SHIBATA, H., TOKUNAGA, T., KARASWA, D., HIROTA, A., NAKAYMA, M., NOZAKI, H. and TADA, T., 1989. Isolation and characterization of new bitter diterpenoids from the fungus Sarcodon scabrosus. Agric. Biol. Chem., 53, 3373-3375.

Mailing address: Prof. Dr. Ji-Kai Liu, Kunming Institute of Botany, Chinese Academy of Sciences,

Kunming 650204, P. R. China

Tel: +86 (871) 5216327; Fax: +86 (871) 5150227

e-mail: jkliu@mail.kib.ac.cn