Three New Homologous 3-Alkyl-1,4-benzoquinones from the Fruiting Bodies of *Daldinia concentrica*

by Xiang-Dong Qin and Ji-Kai Liu*

Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650204, P. R. China (e-mail: jkliu@mail.kib.ac.cn)

A new homologous series of 3-alkyl-5-methoxy-2-methyl-1,4-benzoquinones (1-3), with chain lengths of C_{21} to C_{23} , were isolated from the fruiting bodies of *Daldinia concentrica*, together with five known compounds. The molecular structures were established by spectroscopic methods.

Introduction. – Many unique secondary metabolites have been found in fungi of the ascomycete genus. More than four decades ago, *Allport* and *Bu'lock* studied European and American *Daldinia* sp. [1][2], which resulted in the identification of characteristic metabolites in their stromata and cultures. Some of those compounds had antimicrobial and nematocidal activities [3]. During the study of Japanese *Daldinia* sp., more than 20 new metabolites had been discovered [4–8], including cytochalasins, binaphthyl compounds, and some derivatives of azaphilone and benzophenone, some of which show a wide range of biological activities. As part of our ongoing studies [9–15] on the active metabolites from higher fungi in Yunnan province, China, we investigeted the chemical constituents of Chinese *Daldinia* species. Here, we report the structures of the three new 1,4-benzoquinones 1-3, which were isolated from the CHCl₃ extract of the fruiting bodies of ascomycete *Daldinia concentrica*. The structures were elucidated by spectroscopic means.

MeO
$$4$$
 1 $n = 19$
 $n = 20$
 $n = 20$
 $n = 21$

Results and Discussion. – The CHCl₃ extract of the fruiting bodies of *Daldinia* concentrica was subjected to repeated column chromatography (CC) to afford a yellow powder. Negative FAB-MS showed three molecular-ion peaks at m/z 446 (100), 460 (22) and 474 (27), differing by 14 mass units from each other, suggesting a mixture of three homologous compounds, which could not be separated from each other. On the basis of the HR-TOF-MS data, the following formulae were determined for the respective components: $C_{29}H_{50}O_3$ (1; 446.3759, M^- ; calc. 446.3746), $C_{30}H_{52}O_3$ (2; 460.3916, M^- , calc. 460.3912), and $C_{31}H_{54}O_3$ (3; 474.4072, M^- , calc. 474.4060).

The quinoid nature of compounds 1-3 was evident from the UV (λ_{max} 275 nm) and IR ($\tilde{\nu}$ 1672, 1645, and 1605 cm⁻¹) spectral data, which are typical for 1,4-benzoquinones

^{© 2004} Verlag Helvetica Chimica Acta AG, Zürich

[16]. The ¹H-NMR spectrum of 1-3 (see the *Table*) exhibited signals at $\delta(H)$ 0.85 $(t, Me(CH_2)_n), 1.23 (m, Me(CH_2)_nCH_2), 2.01 (s, 2-Me), 2.46 (t, J = 7.3, Me(CH_2)_nCH_2),$ 3.76 (s, MeO), and 5.84 (s, H-C(6)). The ¹³C-NMR spectrum gave rise to signals at δ (C) 187.7 (C=O), 182.0 (C=O), 158.4 (C_q), 143.2 (C_q), 141.2 (C_q), 107.1 (CH), 56.0 (Me), 14.1 (Me), 12.1 (Me), and 22.7 – 31.9 ((CH_2)_n). These data confirmed a MeO, a Me, and a long-chain alkyl group attached to a quinone nucleus. The locations of these groups were established by HMBC experiments (Table). Correlations were observed between $\delta(H) 2.01$ (2-Me) and $\delta(C) 187.7$ (C(1)); $\delta(H) 2.46, 5.84$ (CH₂(1'), H–C(6)) and $\delta(C)$ 141.2 (C(2)); $\delta(H)$ 2.01 (2-Me) and $\delta(C)$ 143.2 (C(3)); $\delta(H)$ 2.46, 5.84 $(CH_2(1'), H-C(6))$ and $\delta(C)$ 182.0 (C(4)); and between $\delta(H)$ 3.76 (MeO) and $\delta(C)$ 158.4 (C(5)), corroborating that the benzoquinone H-atom at $\delta(H)$ 5.84 and the MeO group at $\delta(H)$ 3.76 were vicinal. Thus, the structures of **1**-3 were assigned as 3-alkyl-5methoxy-2-methyl-1, 4-benzoquinone, the n-alkyl group being $C_{21}H_{43}$, $C_{22}H_{45}$, and $C_{23}H_{47}$, respectively. Thus, the structures are 3-heneicosyl- (1) and 3-docosyl-5methoxy-2-methyl-1,4-benzoquinone (2), and 5-methoxy-2-methyl-3-tricosyl-1,4-benzoquinone (3).

Table 1. ¹H- and ¹³C-NMR Spectral Data of a Ternary Mixture of 1, 2, and 3. In CDCl₃; δ in ppm, J in Hz.

	$\delta(C)$	$\delta(\mathrm{H})$	HMBC (selected)
C(1)	187.7		2-Me
C(2)	141.2		$H-C(6), CH_2(1')$
C(3)	143.2		Me(7)
C(4)	182.0		$H-C(6), CH_2(1')$
C(5)	158.4		MeO
H-C(6)	107.1	5.84(s)	
2-Me	12.1	2.01(s)	
MeO	56.0	3.76(s)	
$CH_2(1')$	26.3	2.46(t, J = 7.3)	
$\operatorname{CH}_2(2')$ to $\operatorname{CH}_2(n')^{\mathrm{a}}$	31.9-22.7	1.23(m)	
MeCH ₂	14.1	0.85(t, J = 6.4)	

Together with compounds **1**–**3**, the following known constituents were isolated from *D. concentrica:* friedelin [17], ergosta-4,6,8(14),22-tetraen-3-one [18], ergosta-7,22-dien-3-one [19], as well as (22E,24R)-ergosta-7,22-dien-3 β -ol and ergosta-5,7,22-trien-3 β -ol [18][20].

Experimental Part

Fungal Material. Fruiting bodies of *Daldinia concentrica* were collected in Laojunshan, Yunnan, P. R. China, in 2003. A voucher specimen was deposited at the herbarium of the Kunming Institute of Botany, The Chinese Academy of Sciences.

General. Melting points (m.p.): XRC-1 apparatus (Sichuan University, Sichuan, China). Optical rotations: Horiba SEPA-300 automatic polarimeter (Horiba, Tokyo, Japan). IR Spectra: Bruker Tensor-27 spectrophotometer (Bruker, Karlsruhe, Germany); KBr technique, in cm⁻¹. NMR Spectra: Bruker DRX-500 NMR (Bruker, Karlsruhe, Germany); at 400 (¹H) and 100 MHz (¹³C); δ in ppm rel. to SiMe₄ as internal standard, J in Hz. MS: VG Autospec-3000 mass spectrometer (VG, Manchester, UK) and API Qstar Pulsar (Applied Biosystems, Foster City, USA); in m/z.

Extraction and Isolation. Dried fruiting bodies (11.5 kg) of *D. concentrica* were extracted at r.t. with CHCl₃ (3×). The combined org. extracts were concnetrated *in vacuo* to afford a deep-brown gum (150 g), which was submitted to column chromatography (CC) (SiO₂; CHCl₃/MeOH). A total of 20 fractions were collected. The fractions eluted with CHCl₃/MeOH 100:1, 95:5, 9:1, and 8:2 afforded friedelin (6.3 mg), ergosta-4,6,8(14),22-tetraen-3-one (11.7 mg), and a binary mixture of (22E,24R)-ergosta-7,22-dien-3 β -ol and ergosta-5,7,22-trien-3 β -ol (36.9 mg), respectively, after recrystallization. The fraction eluted with CHCl₃/MeOH 9:1 (1.5 g) was subjected to CC (SiO₂; petroleum ether/acetone), yielding a ternary mixture of **1**, **2**, and **3** (11.2 mg), as well as ergosta-7,22-dien-3-one (27 mg).

Ternary Mixture of 3-Heneicosyl-5-methoxy-2-methyl-1,4-benzoquinone (1), *3-Docosyl-5-methoxy-2-methyl-1,4-benzoquinone* (2), and 5-Methoxy-2-methyl-3-tricosyl-1,4-benzoquinone (3). Yellow powder. UV (CHCl₃): 275 nm. IR (KBr): 3452, 2918, 2850, 1672, 1645, 1605, 1468, 1230, 1076, 721. ¹H- and ¹³C-NMR: see the *Table*. FAB-MS (neg.): 446 (1; 100, M^-), 460 (2; 22, M^-), 474 (3; 27, M^-). HR-TOF-MS (neg.): 446.3746 (1; M^- , C₂₉H₅₀O₃⁻; calc. 446.3760), 460.3912 (2; M^- , C₃₀H₅₂O₃⁻; calc. 460.3916), 474.4060 (3; M^- , C₃₁H₅₄O₃⁻; calc. 474.4073).

Friedelin. Colorless needles. M.p. $261-263^{\circ}$ (CHCl₃). The MS and NMR data were consistent with those reported in [17].

Ergosta-4,6,8(14),22-tetraen-3-one. Pale yellow needles. M.p. $112-114^{\circ}$ (petroleum ether/acetone). The MS and NMR data were consistent with those reported in [18].

Ergosta-7,22-dien-3-one. Colorless needles. M.p. $184-187^{\circ}$ (petroleum ether/acetone). The MS and NMR data were consistent with those reported in [19].

Binary Mixture of (22E,24R)-Ergosta-7,22-dien-3\beta-ol and Ergosta-5,7,22-trien-3\beta-ol. Colorless needles. The MS and NMR data were consistent with those reported in [18][20].

This project was supported by the National Natural Science Foundation of China (30225048).

REFERENCES

- [1] D. C. Allport, J. D. Bu'lock, J. Chem. Soc. 1960, 654.
- [2] D. C. Allport, J. D. Bu'lock, J. Chem. Soc. 1958, 4090.
- [3] H. Anke, M. Stadler, A. Mayer, O. Sterner, Can. J. Bot. 1995, 73, 802.
- [4] M. S. Buchanan, T. Hashimoto, S. Takaoka, Y. Kan, Y. Asakawa, Phytochemistry 1996, 42, 173.
- [5] M. S. Buchanan, T. Hashimoto, Y. Asakawa, Phytochemistry 1995, 40, 135.
- [6] M. S. Buchanan, T. Hashimoto, Y. Asakawa, Phytochemistry 1996, 41, 821.
- [7] T. Hashimoto, S. Tahara, S. Takaoka, M. Tori, Y. Asakawa, Chem. Pharm. Bull. 1994, 42, 2397.
- [8] T. Hashimoto, S. Tahara, S. Takaoka, M. Tori, Y. Asakawa, Chem. Pharm. Bull. 1994, 42, 1528.
- [9] J. K. Liu, Heterocycles 2002, 57, 157.
- [10] J. W. Tan, Z. J. Dong, J. K. Liu, Helv. Chim. Acta 2003, 86, 307.
- [11] J. W. Tan, Z. J. Dong, J. K. Liu, *Lipids* 2003, 38, 81.
- [12] L. Hu, J. W. Tan, J. K. Liu, Z. Naturforsch., Sect. C 2003, 58, 659.
- [13] W. M. Yang, J. K. Liu, Q. Chen, Y. D. Liu, Z. H. Ding, Z. Q. Shen, Z. H. Chen, Planta Med. 2003, 69, 715.
- [14] L. Hu, J. K. Liu, Z. Naturforsch., Sect. C 2003, 58, 452.
- [15] J. K. Liu, L. Hu, Z. J. Dong, *Lipids* 2003, 38, 669.
- [16] A. C. Alves, M. M. Moreira, M. I. Paul, M. A. C. Costa, Phytochemistry 1992, 31, 2825.
- [17] J. Klass, W. F. Tinto, S. Mclean, W. F. Reynolds, J. Nat. Prod. 1992, 55, 1626.
- [18] J. M. Gao, Z. J. Dong, J. K. Liu, Lipids 2001, 36, 175.
- [19] A. C. Jain, S. K. Gupta, Phytochemisty 1984, 23, 686.
- [20] W. Lu, I. Adachi, K. Kano, A. Yasuta, K. Toriizuka, M. Veno, I. Horikoshi, Chem. Pharm. Bull. 1985, 33, 5083.

Received March 8, 2004