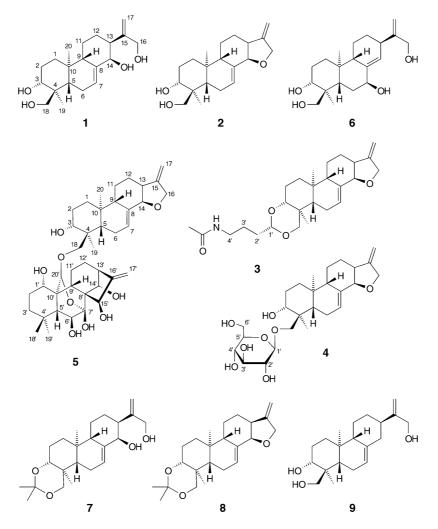
New ent-Abietanoids from Isodon rubescens

by Quan-Bin Han^a), Rong-Tao Li^a), Ji-Xia Zhang^b), and Han-Dong Sun*^a)

 ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P.R. China (Phone: +86-871-5223251; fax: +86-871-5216343; e-mail: hdsun@mail.kib.ac.cn or han_dongsun@hotmail.com)


^b) Department of Chemistry, Xinxiang Medical College, Xinxiang 453000, Henan, P.R. China

Six new *ent*-abietane diterpenoids, rubescensins I-M (1–5) and P (6), along with two related acetonide derivatives (7 and 8), were isolated from *Isodon rubescens*. Their structures were elucidated by detailed spectroscopic analysis. Compound 5 is the first N-containing diterpenoid from the genus *Isodon*, exhibiting notable cytotoxicity against human tumor K562 cells.

Introduction. – In our previous papers [1][2], 20 tetracyclic *ent*-kaurane diterpenoids were reported from *Isodon rubescens* (HEMSL.) HARA. Our continuing search for biologically active principles from this plant, collected in two different prefectures of the Henan Province of China, has now led to the isolation of six new *ent*-abietane diterpenoids named rubescensins I-M (1-5) and P (6), together with two related acetonide derivatives (7 and 8). In this paper, we report the isolation and structural elucidation of these new compounds.

Results and Discussion. – *Structure Elucidation*. Rubescensin I (1), obtained as an amorphous powder, gave rise to a molecular-ion peak at m/z 336.2315 in the HR-EI mass spectrum, consistent with the molecular formula $C_{20}H_{32}O_4$. Careful analysis of the ¹H- and ¹³C-NMR data (*Table 1*) indicated 1 to be an *ent*-abietanoid similar to laxiflorin O (9) reported from *I. eriocalyx* var. *laxiflora* [3]. Compound 1 was elucidated as $(3\alpha, 14\beta)$ -*ent*-abieta-7,15(17)-diene-3,4,16,18-tetraol by extensive analysis of its 2D-NMR spectra, and by comparison of the 1D-NMR spectra of 1 and 9.

In the ¹³C-NMR spectrum of **1**, signals of two olefinic quaternary C-atoms (δ 141.2 and 152.8), an olefinic CH₂ (110.8), an olefinic CH (124.3), two O-CH₂ (66.1, 64.6), five CH₂ (38.1, 27.9, 25.7, 23.9, 23.4), two O-CH (74.8, 74.1), three CH (48.5, 47.6, 43.0), two nonoxygenated quaternary C-atoms (43.3, 35.1), and two Me groups (13.0, 15.9) were present. Thus, compound **1** was lacking one nonoxygenated quaternary C-atom relative to the classical *ent*-kaurane skeleton, suggesting **1** to be a tricylic diterpenoid. Comparison of the ¹H- and ¹³C-NMR spectra of **1** and the known tricylic *ent*-abietanoid laxiflorin O (**9**) [3] revealed great similarities, except for one more OH group at C(14) of **1**. Thus, **1** can be regarded as an *ent*-abietane diterpenoid corresponding to 14-hydroxylaxiflorin O. This was further supported by positive [α]_D values for **1** and **9**.

The above assignment was also corroborated by HMBC experiments (*Fig. 1,a*). The CH₂(17)=C(15) moiety was confirmed by correlations of CH₂(17) (δ 5.57 and 5.28) with C(13) (δ 47.6) and C(16) (δ 64.6). The other C=C bond was assigned to C(7) and C(8) on the ground of the observed HMBC correlation of H–C(7) at $\delta_{\rm H}$ 5.66 with C(5) at $\delta_{\rm C}$ 43.0 and C(9) at $\delta_{\rm C}$ 48.5. Due to the presence of the HMBC correlations of H–C(3) with C(1), C(5), and C(18), of H–C(14) with C(7), C(9), and C(15), of CH₂(16) with C(13) and C(17), and of CH₂(18) with C(3), C(5), and C(19), the four OH groups were placed at C(3), C(14), C(16), and C(18), respectively (*Table 1* and *Fig. 1,a*).

The relative configuration of **1** was derived by a ROESY experiment (*Fig. 1,b*). The α -orientation of the 3-OH and the β -orientation of the 14-OH groups were apparent

	1		7	2	8	
	¹³ C	¹ H	¹³ C	¹³ C	¹ H	¹³ C
CH ₂ (1)	38.1 (t)	1.82, 1.18 (2 <i>m</i>)	38.2 (t)	37.5 (t)	1.79, 1.18 (2m)	37.9 (<i>t</i>)
$CH_{2}(2)$	27.9 (t)	1.92, 1.85 (2m)	24.3 (t)	28.8(t)	1.89, 1.62 (2m)	24.3 (t)
$H_{\beta}-C(3)$	74.1(d)	4.14 (dd, J = 10.8, 4.9)	77.4(d)	73.1 (d)	4.17 (dd, J = 10.8, 4.9)	77.3 (d)
C(4)	43.3 (s)	-	36.7 (s)	42.7(s)	-	36.6 (s)
$H_{\beta}-C(5)$	43.0 (d)	1.90*	45.6 (d)	42.3(d)	1.94*	45.0 (d)
$CH_2(6)$	23.4(t)	2.05-2.00*	22.4(t)	23.5(t)	2.09-2.03*	22.8(t)
H-C(7)	124.3 (d)	5.66 $(d, J = 2.1)$	123.2(d)	129.5 (d)	5.66 $(d, J = 2.1)$	128.8(d)
C(8)	141.2(s)	-	141.5(s)	134.6 (s)	-	135.4 (s)
$H_{\beta}-(9)$	48.5(d)	2.40*	48.5 (d)	49.2 (d)	2.05*	49.5 (d)
C(10)	35.1 (s)	_	35.1 (s)	34.8(s)	-	35.1 (s)
$CH_{2}(11)$	23.9 (t)	1.75, 1.20 (2m)	23.6 (t)	23.7 (t)	1.93, 1.04 (2m)	23.6 (t)
$CH_{2}(12)$	25.7(t)	2.20, 1.65 (2m)	25.3 (t)	27.5(t)	1.65, 1.42 (2m)	28.9 (t)
$H_a - C(13)$	47.6 (d)	2.50 (br. $d, J = 12.4$)	47.3 (d)	45.8(d)	2.41 (<i>m</i>)	45.9 (d)
$H_a - C(14)$	74.8(d)	4.58 (br. s)	74.5 (d)	83.4 (d)	4.18 (br. s)	83.5 (d)
C(15)	152.8(s)	-	152.5(s)	154.5(s)	-	154.6 (s)
$CH_{2}(16)$	64.6 (<i>t</i>)	4.65, 4.56 (2d, J = 14.0)	64.7 (<i>t</i>)	69.4 (t)	4.55, 4.26 (2d, J = 14.0)	69.6 (<i>t</i>)
$CH_{2}(17)$	110.8(t)	5.57, 5.28 (2 br. s)	110.7(t)	102.9 (t)	5.01, 4.84 (2 br. s)	103.2 (t)
CH ₂ (18)	66.1(t)	4.10, 3.59 (2d, J = 10.8)	72.2(t)	67.1(t)	4.06, 3.60 (2d, J = 10.8)	72.1(t)
Me-C(19)	13.0(q)	1.15 (s)	12.9(q)	12.6(q)	1.12 (s)	12.7(q)
Me-C(20)	15.0(q)	0.92(s)	15.9(q)	15.0(q)	0.86(s)	15.3(q)
Me_2C-O	-	-	99.0 (s)	-	-	99.0 (s)
			30.2(q)			30.2(q)
			19.4(q)			19.4(q)

Table 1. ¹*H- and/or* ¹³*C-NMR Data of Compounds* **1**, **2**, **7**, and **8**. 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, *J* in Hz. Asterisks (*) mark overlapping signals.

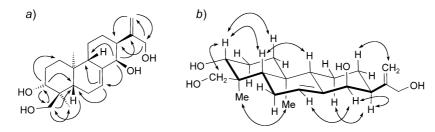


Fig. 1. Key HMBC $(H \rightarrow C)$ and ROESY correlations observed in 1

from the ROEs of H_{β} -C(3) with both H_{β} -C(5) and CH₂(18), and of H_{α} -C(14) with both H_{α} -C(13) and H-C(7).

Compound **1** showed an unprecedented color change on TLC plates (SiO₂) from green to red to purple to blue when being baked at 200° after dipping in 10% ethanolic H₂SO₄. So did rubescensin *J* (**2**), having the molecular formula C₂₀H₃₀O₃, as determined by HR-EI-MS (*m*/*z* 318.2193; calc. 318.2195). Comparison of the ¹H-, ¹³C-, and DEPT-NMR data of **2** and **1** revealed that **2** was also an *ent*-abietanoid, differing from **1** only at C(14) and C(16). The clear HMBCs correlations between H–C(14) ($\delta_{\rm H}$ 4.18) and C(16) ($\delta_{\rm C}$ 69.4), and between CH₂(16) ($\delta_{\rm H}$ 4.55 and 4.26) and C(14) indicated the presence of an O-bridge between C(14) and C(16), causing significant downfield

chemical shifts of C(14) ($\delta_{\rm C}$ 83.4) and C(16) ($\delta_{\rm C}$ 69.4). This was consistent with a molecular weight being 18 amu lower than that of **1** (condensation of C(14)–OH and C(16)–OH under loss of H₂O). Thus, **2** was elucidated as (3 α)-14,16-epoxy-*ent*-abieta-7,15(17)-diene-3,18-diol.

Rubescensin K (3) was also an *ent*-abietanoid, as indicated by the same characteristic color changes in the TLC test. It exhibited an odd molecular-ion peak at m/z 429 in the EI mass spectrum, and an $[M+1]^+$ signal at m/z 430 in the FAB mass spectrum, suggesting that it might contain a N-atom. The HR-EI-MS data (M^+ signal at m/z429.2871) verified this assumption, giving rise to the molecular formula $C_{26}H_{39}NO_4$. On the basis of careful analysis of the ¹H-, ¹³C-, and 2D-NMR data (*Table 2*), compound **3** was identified as 3α , $(3\alpha, 14\beta)$ -3, 18-{[(1S)-4-(acetylamino)butane-1,1-diyl]dioxy}-14, 16epoxy-*ent*-abieta-7, 15(17)-diene, and was named rubescensin K, which is the first Ncontaining diterpenoid isolated from *Isodon* plants.

	3		4		6	
	¹³ C	¹ H	¹³ C	¹ H	¹³ C	$^{1}\mathrm{H}$
CH ₂ (1)	37.9 (<i>t</i>)	1.73, 1.05 (2m)	37.6 (<i>t</i>)	1.68, 1.00 (2m)	37.1 (t)	1.63, 1.25 (2m)
$CH_{2}(2)$	24.2(t)	1.70-1.18*	29.0(t)	1.81, 1.52 (2m)	27.9 (t)	1.90*
$H_{\beta}-C(3)$	85.0(d)	3.13 (<i>m</i>)	73.0(d)	4.11*	74.9(d)	4.23 (<i>m</i>)
C(4)	36.5(s)	-	43.1 (s)	-	42.6(s)	-
$H_{\beta}-C(5)$	45.1 (<i>d</i>)	1.00*	42.8 (<i>d</i>)	1.83*	40.9 (<i>d</i>)	2.47 $(dd, J = 13.0, 2.0)$
CH ₂ (6)	22.9 (<i>t</i>)	1.70 - 1.18*	23.8 (<i>t</i>)	2.07, 1.95 (2m)	30.5 (<i>t</i>)	2.09 (d, J = 13.0) 1.77 (m)
H-C(7)	128.8(d)	5.78 $(d, J = 2.0)$	129.8 (d)	5.79 $(d, J = 2.2)$	72.3(d)	4.49 (br. s)
C(8)	135.5 (s)	-	134.5 (s)	-	141.8 (s)	-
$H_{\beta}-C(9)$	49.4(d)	1.93*	49.1 (d)	1.90*	46.5 (d)	2.58 (br. s)
C(10)	35.1 (s)	_	35.1 (s)	-	38.7 (s)	-
$CH_{2}(11)$	23.6(t)	1.70-1.18*	23.9(t)	1.87, 0.97 (2m)	22.6(t)	1.70, 1.36 (2m)
$CH_{2}(12)$	24.2(t)	1.70-1.18*	27.5(t)	1.57, 1.36 (2m)	29.7 (t)	1.92, 1.32 (2m)
$H_a - C(13)$	45.9 (d)	2.37 (<i>m</i>)	46.1(t)	2.38 (<i>m</i>)	39.4 (d)	2.89 (<i>m</i>)
H - C(14)	83.5 (d)	$4.14 (d, J = 4.0, H_a)$	83.6 (d)	$4.15 (d, J = 4.0, H_a)$	128.7(d)	5.89 (br. s)
C(15)	154.6 (s)	-	154.9 (s)	-	155.1 (s)	
$CH_{2}(16)$	69.6 (<i>t</i>)	4.53, 4.23	69.6 (t)	4.53, 4.25	64.2(t)	4.41*
		(2d, J = 13.2)		(2d, J = 14.0)		
$CH_{2}(17)$	103.2 (t)	5.03, 4.84 (2 br. s)	103.2 (t)	5.00, 4.85 (2 br. s)	107.8 (t)	5.43, 4.99 (2 br. s)
$CH_{2}(18)$	77.9 (t)	3.69, 3.08	76.0(t)	4.21, 3.53	69.4 (t)	4.17, 3.82
		(2d, J = 10.8)		(2d, J = 10.4)		(2d, J = 10.4)
Me - C(19)	13.6(q)	1.17 (s)	12.8(q)	1.05 (s)	12.8(q)	1.18 (s)
Me-C(20)	15.3(q)	0.73(s)	15.2(q)	0.78(s)	14.6(q)	0.90(s)
H-C(1')	102.6(d)	4.67 (br. s)	105.8(d)	4.84 (d, J = 7.6)	-	-
H-C(2')	32.8(t)	1.90-1.78 (2 H)*	74.9 (d)	$4.04 \ (dd, J = 6.4, 2.0)$	-	-
H-C(3')	24.7(t)	1.90-1.78 (2 H)*	78.7(d)	4.24*	-	-
H-C(4')	39.6 (t)	3.48 (2 H)*	72.2(d)	4.13*	-	-
H-C(5')	-		78.6 (d)	4.02 (<i>m</i>)	-	_
CH ₂ (6')	-	-	63.2 (<i>t</i>)	4.62(d, J = 11.0),	-	-
				4.32 (dd, J = 11.0, 8.0)		
NHAc	169.8 (s) 23.1 (q)	8.44 (br. s, NH) 1.99 (s)	_	_	-	_

Table 2. ¹*H- and* ¹³*C-NMR Data of Compounds* **3**, **4**, and **6**. 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, *J* in Hz. Asterisks (*) mark overlapping signals.

Examination of the ¹H- and ¹³C-NMR data of **3** revealed that the molecule consisted of two portions, one of which closely resembled **2**, except for the downfield-shifted C(3) and C(18) ¹³C-NMR signals at δ_C 85.0 and 77.9, respectively. The other portion contained one N- and six C-atoms, including one Me (δ_C 23.1), three CH₂ (24.7, 32.8, 39.6), a C=O group (169.8), and one highly oxygenated CH (102.6). The CH₂(4') group resonating at δ_C 39.6 and δ_H 3.48 (*m*) was linked with an acetamide NH (δ_H 8.44), as deduced from a ¹H, ¹H-COSY experiment, as well as from the HMBC correlations (*Fig.* 2) of both the CH₂(4') (δ_H 3.48) and a Me group (δ_H 1.99) with the C=O C-atom (δ_C 169.8). H–C(1') (δ_C 102.6; δ_H 4.67) was linked with C(3) and C(18) according to a HMBC experiment. In the ¹H, ¹H-COSY spectrum, the overlapping CH₂(2') and CH₂(3') resonances (δ_H 1.90–1.78) exhibited correlations with the H-atoms of CH(1') and CH₂(4') (δ_H 3.48), respectively, suggesting that C(1') to C(4') were anchored in a line, as confirmed by the HMBC experiment (*Fig.* 2). The H–C(1') H-atom was involved in NOEs with H_{\beta}–C(3) and CH₂(18), confirming β -configuration at C(1').

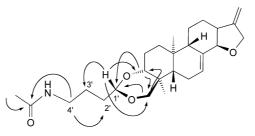


Fig. 2. Key HMBC $(H \rightarrow C)$ correlations observed in 3

Rubescensin L (4), a white amorphous powder, gave rise to a molecular-ion peak at m/z 480 in the EI mass spectrum, in accord with the molecular formula $C_{26}H_{40}O_8$, as determined by HR-EI-MS (480.2708 (M^+ ; calc. 480.2723)). Analysis of the ¹H- and ¹³C-NMR data indicated that **4** was a glucoside of **2**. The significant downfield shift of C(18) (δ_C 76.0) of **4**, in combination with the ¹H- and ¹³C-NMR data and coupling patterns of the glucose moiety with reference data [4], suggested that a β -D-glucose unit was linked at C(18), which was confirmed by HMBCs correlations between CH₂(18) (δ_H 4.21 and 3.53) and C(1') (δ_C 105.8), and between H–C(1') (δ_H 4.84) and C(18). Therefore, **4** was established as the 18-*O*- β -D-glycopyranoside of **2**.

Rubescensin M (5) was obtained as a white amorphous powder. FAB-MS exhibited an $[M+1]^+$ peak at m/z 683, consistent with the molecular formula $C_{40}H_{58}O_9$, as determined by both HR-FAB-MS and ¹H- and ¹³C-NMR (*Table 3*). Analysis of the spectral data, including 2D-NMR, indicated that **5** was composed of two diterpene moieties (partial structures **5a** and **5b**), as shown in *Fig. 3*. Thereby, based on NMR, **5a** was identical with **2**, and **5b** was suggested to be a 7,20-epoxy-*ent*-kaurane due to the characteristic signals of three nonoxygenated quaternary C-atoms [C(4'), C(8'), C(10') at δ_C 33.6, 52.4, 43.5, resp.], two Me groups at quaternary C-atoms [C(18') and C(19') at δ_C 33.5 and 22.3, resp.], a hemiketal C-atom [C(7') at δ_C 101.5], and three nonoxygenated CH groups [C(5'), C(9'), C(13') at δ_C 56.7, 45.0, 46.4, resp.]. Further comparison of the ¹H- and ¹³C-NMR data of **5b** and rabdoternins B and F [5][6], two known 7,20-epoxy-*ent*-kauranoids that had been isolated as well, suggested that **5b** was a 7 α ,20-epoxy-*ent*-kaur-16-ene-1,6,7,14,15-pentaol, strongly resembling rabdoternin B, except for the oxygenation pattern of C(20), and differing from rabdoternin F only at C(15). Furthermore, it was deduced that **5a** and **5b** were linked together by an oxy bridge between C(18) ($\delta_{\rm C}$ 71.7) and C(20') ($\delta_{\rm C}$ 101.8) on the basis of HMBC correlations between H–C(20) and C(18), as well as between CH₂(18) and C(20') (*Fig. 3*).

Table 3. ¹*H*- and ¹³*C*-*NMR* Data of Compound 5. Note that **5a** and **5b** are ether-bridged fragment structures (see chemical formula). 400 and 100 MHz, resp.; C_5D_5N ; δ in ppm, *J* in Hz. Asterisks (*) mark overlapping signals.

	5a			5b	
	¹³ C	$^{1}\mathrm{H}$		¹³ C	$^{1}\mathrm{H}$
$CH_2(1)$	37.9 (<i>t</i>)	1.78, 1.11 (2m)	$H_{\beta}-C(1')$	75.9 (d)	3.66 (dd, J = 9.6, 4.0)
$CH_{2}(2)$	29.1 (t)	1.91*, 1.65*	$CH_2(2')$	31.0 (t)	1.91*, 1.75*
$H_{\beta}-C(3)$	73.4(d)	3.95*	CH ₂ (3')	39.3 (t)	1.36*, 1.29*
C(4)	42.3 (s)	_	C(4')	33.6 (s)	-
$H_{\beta}-C(5)$	42.5(d)	2.09 (dd, J = 9.6, 2.4)	$H_{\beta}-C(5')$	56.7 (d)	1.62 (d, J = 5.0)
$CH_2(6)$	23.7 (t)	2.52, 2.00 (2 <i>m</i>)	$H_a - C(6')$	71.6(d)	4.11 (d, J = 5.0)
H-C(7)	130.8(d)	5.59 (<i>m</i>)	C(7')	101.5 (s)	-
C(8)	133.7 (s)	_	C(8')	52.4 (s)	-
$H_{\beta}-C(9)$	50.5(d)	1.97*	$H_{\beta}-C(9')$	45.0(d)	2.89 (<i>m</i>)
C(10)	34.9 (s)	_	C(10')	43.5 (s)	-
$CH_{2}(11)$	23.3 (t)	1.86*, 1.00*	$CH_2(11')$	21.6 (t)	2.67, 2.24 (2m)
$CH_{2}(12)$	27.8 (t)	1.60, 1.26 (2 <i>m</i>)	$CH_2(12')$	33.9 (t)	2.55 (m), 1.74*
$H_a - C(13)$	45.3 (d)	2.39 (<i>m</i>)	$H_{\alpha} - C(13')$	46.4(d)	2.93 (d, J = 7.2)
$H_a - C(14)$	83.5 (d)	4.12*	$H_{a} - C(14')$	75.9(d)	5.16 (s)
C(15)	153.7 (s)	_	C(15')	73.1 (d)	5.65 (s)
$CH_{2}(16)$	69.2 (<i>t</i>)	4.45, 4.13 (2d, J = 10.4)	$CH_2(16')$	161.2 (s)	-
$CH_{2}(17)$	103.8(t)	5.02, 4.85 (2 br. s)	$CH_2(17')$	109.0(t)	5.65, 5.37 (2 br. s)
$CH_{2}(18)$	71.7(t)	3.96, 3.87 (2d, J = 7.0)	Me - C(18')	33.5(q)	1.16(s)
Me - C(19)	12.5(q)	1.02 (s)	Me-C(19')	22.3(q)	1.05(s)
Me-C(20)	15.0(q)	0.81 (s)	H-C(20')	101.8(d)	5.76 (s)

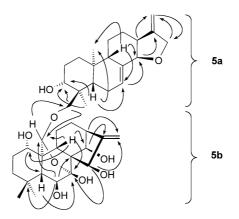


Fig. 3. Key HMBC $(H \rightarrow C)$ correlations observed in 5

The relative configuration of **5** was confirmed by a ROESY experiments (*Fig. 4*). The orientations of the OH groups at C(1'), C(6'), and C(14') were shown to be a, β , and β , respectively, as deduced from the NOEs between $H_{\beta}-C(1')$ (δ_H 3.66) and $H_{\beta}-C(5')$ (δ_H 1.62), and between $H_{\beta}-C(9')$ (δ_H 2.89) and $H_{\alpha}-C(6')$ (δ_H 4.11) and Me(19') (δ_H 1.05), as well as between $H_{\alpha}-C(14')$ (δ_H 5.16) and $H_{\alpha}-C(11')$ (δ_H 2.67), respectively. However, there was no NOE for H-C(15'), suggesting an α -orientation, which was confirmed by the steric effect between $H_{\beta}-C(9')$ and HO-C(15') indicated by an upfield shift of C(9') (δ_C 45.0). Finally, the relative (*S*)-configuration at C(20') was determined by the key NOE between H-C(20') and Me(19'). There were also NOEs between H-C(20') and $H_{\beta}-C(3)$, and between H-C(20') and $CH_2(18)$, confirming the linkage between the two moieties of **5**.

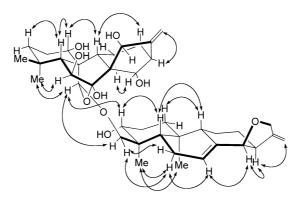


Fig. 4. Key ROESY correlations observed in 5

Rubescensin P (6), an amorphous powder, had the same molecular formula $(C_{20}H_{32}O_4)$ as **1**, as revealed by HR-EI-MS. Comparison of the ¹³C-NMR data of **6** (*Table 2*) and **1** (*Table 1*) indicated that they both had two OCH₂, two OCH, two olefinic quaternary C-atoms, an olefinic CH, and an olefinic CH₂, with differences in rings B and C, which were detailed by HMBC correlations between H–C(14) (δ_H 5.89) and both C(15) (δ_C 155.1) and C(9) (δ_C 46.5) (*Fig.* 5), suggesting the presence of a C=C bond between C(8) (δ_C 141.8) and C(14) (δ_C 128.7). The β -orientation of HO–C(7) was indicated by the HMBC correlations between H_a–C(7) and both C(5) and C(9), and by the NOE of H_a–C(7) and H–C(14). Thus, **6** was determined to be (3 α ,7 β)-ent-abieta-8(14),15(17)-diene-3,7,16,18-tetraol.

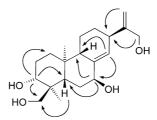


Fig. 5. Key HMBC $(H \rightarrow C)$ correlations observed in 6

The ¹³C-NMR spectrum of **7** closely resembled that of **1**, except for three extra Catom signals at δ_C 99.0, 30.2, and 19.4, suggesting that **7** was an acetonide derivative of **1**. The acetonide group was located between C(3) and C(18), as indicated by HMBC correlations between both H–C(3) (δ_H 3.50) and CH₂(18) (δ_H 3.48 and 3.26) with the quaternary C-atom (δ_C 99.0) of the Me₂C group. The relative configurations at C(3) and C(14) were assigned by the NOEs in the ROESY spectrum of **7**. Therefore, **7** was identified as ($3\alpha, 14\beta$)-3,18-[(1-methylethane-1,1-diyl)dioxy]*-ent*-abieta-7,15(17)-diene-14,16-diol; in the same way, compound **8**¹) was elucidated as the acetonide of **2**.

The isolation of *ent*-abietanoids from an *Isodon* plant, a genus notable as a rich source of tetracyclic *ent*-kauranoids [8], may suggest a potential biogenesis path from *ent*-kaurane to *ent*-abietane, because these *ent*-abietanoids, without the key H_a -C(8) of the *ent*-abietane skeleton, could also be regarded as 8,15-*seco-ent*-kauranoids.

Cytotoxicity. The new compounds 1-8 were tested for their cytotoxity against human-tumor K562 cells by a method previously described [7]. Only compound **3** exhibited a significant inhibitory effect, with an IC_{50} value of 0.49 µg/ml, which is in the range of cisplatin (1.44 µg/ml).

Experimental Part

General. Optical rotations: JASCO DIP-370 digital polarimeter. UV Spectra: Shimadzu UV-210A spectrometer; λ_{max} in nm, (log ε). IR Spectra: Bio-Rad FtS-135 spectrometer; KBr pellets; in cm⁻¹. 1D- and 2D-NMR Spectra: Bruker AM-400 and DRX-500 spectrometers; in C₅D₅N; δ in ppm rel. to SiMe₄ as internal standard, J in Hz. Mass spectra: VG Autospec-3000 spectrometer (70 eV for EI); in m/z (rel. %).

Plant Material. Plants of *Isodon rubescens* were collected in the Jiyuan and Hebi Prefectures in August 1999 and August 2000, resp., Henan Province of China. They were identified by Prof. *Zhong-Wen Lin.* Voucher specimens (KIB-99-10-13 Lin and KIB-2000-8 Lin) were deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Science.

Extraction and Isolation. a) Plant Material from the Jiyuan Prefecture. The air-dried leaves (13 kg) of *I.* rubescens from the Jiyuan Prefecture were extracted with 70% aq. acetone at r.t. overnight (3×), and the extract was filtered. The filtrate was evaporated, and the resulting residue was partitioned between H₂O and AcOEt. The AcOEt fraction (424 g of dry extract) was purified by column chromatography (CC) (3 kg of SiO₂ (100–200 mesh); CHCl₃/acetone 1:0 \rightarrow 0:1), affording *Fractions I–IX*. After repeated CC (SiO₂; gradient mixtures of CHCl₃/MeOH), *Fraction VII* afforded **1** (150 mg), **7** (14 mg), and **2** (110 mg). In the same way, **3** (8 mg), **4** (5 mg), and **5** (6 mg) were isolated from *Fraction VIII*.

b) Plant Material from the Hebi Prefecture. The air-dried leaves (10 kg) of *I. rubescens* from the Hebi Prefecture were extracted with 70% aq. acetone at r.t. overnight ($3 \times$), and the extract was filtered. The filtrate was evaporated, and the resulting residue was partitioned between H₂O and AcOEt. The AcOEt fraction (400 g of dry extract) was purified by CC (SiO₂; CHCl₃; CHCl₃/acetone 9:1, 8:2, 7:3, 6:4; acetone) to afford *Fractions I–VI*. Compounds **1** (50 mg), **7** (6 mg), **2** (80 mg), and **8** (20 mg) were isolated from *Fraction V*, and compounds **4** (20 mg) and **6** (23 mg) were obtained from *Fraction VI* by repeated CC (SiO₂; gradient mixtures of CHCl₃/MeOH), followed by repeated prep. TLC (SiO₂; CHCl₃/MeOH 10:1).

 $(3a,14\beta)$ -ent-*Abieta-7,15(17)-diene-3,14,16,18-tetraol* (*Rubescensin I*; 1). White amorphous powder. $[\alpha]_{21}^{21} = +38.9 \ (c = 0.32, \text{ MeOH}). \text{ UV (MeOH): } 203 \ (4.74). \text{ IR (KBr): } 3417, 2933, 2870, 1385, 1087, 1056, 917.$ ¹H- and ¹³C-NMR: see *Table 1*. EI-MS: 336 \ (65, *M*⁺), 318 \ (80), 300 \ (85), 282 \ (42), 269 \ (54), 167 \ (90), 149 \ (100).
HR-EI-MS: 336.2315 $(M^+, C_{20}H_{32}O_4^+; \text{ calc.: } 336.2301).$

 $(3a,14\beta)$ -14,16-Epoxy-ent-abieta-7,15(17)-diene-3,18-diol (Rubescensin J; 2). White amorphous powder. [α]_D²⁶ = -24.8 (c = 0.30, MeOH). UV (MeOH): 204 (3.77). IR (KBr): 3418, 2935, 2863, 1733, 1712, 1559, 1226,

¹⁾ Compounds **7** and **8** may well be artifacts of **1** and **2**, respectively, formed during acetone extraction and purification.

1071, 1031, 950. ¹H- and ¹³C-NMR: see *Table 1*. EI-MS: 318 (10, M^+), 300 (6), 269 (8), 241 (5), 162 (31), 149 (100). HR-EI-MS: 318.2193 (M^+ , $C_{20}H_{30}O_3^+$; calc.: 318.2195).

 $(3a,14\beta)$ -3,18-{[[(1S)-4-(Acetylamino)butane-1,1-diyl]dioxy]-14,16-epoxy-ent-abieta-7,15(17)-diene (Rubescensin K; **3**). White amorphous powder. [a]₂₀²⁰ = +7.2 (c = 1.25, AcOEt). UV (MeOH): 204 (4.29). IR (KBr): 3416, 2933, 2856, 1652, 1645, 1558, 1444, 1382, 1114, 1026. ¹H- and ¹³C-NMR: see *Table 2*. EI-MS: 429 (10, M^+), 386 (3), 355 (2), 329 (8), 300 (8), 284 (9), 149 (100). FAB-MS: 430 ([M + 1]⁺). HR-EI-MS: 429.2871 (M^+ , $C_{29}H_{39}NO_4^+$; calc. 429.2879),

 $(3a,14\beta)$ -14,16-Epoxy-18- $f(\beta$ -D-glucopyranosyl)oxy]-ent-abieta-7,15(17)-dien-3-ol (Rubescensin L; 4). White amorphous powder. $[a]_{20}^{20} = -35.7$ (c = 0.224, pyridine). UV (MeOH): 205 (3.91). IR (KBr): 3441, 3410, 2933, 2861, 1662, 1635, 1079, 1023. ¹H- and ¹³C-NMR: see *Table 2*. EI-MS: 480 (4, M^+), 462 (8), 444 (3), 329 (60), 318 (62), 300 (80), 282 (82), 269 (54), 149 (100). HR-EI-MS: 480.2708 (M^+ , $C_{26}H_{40}O_8^+$; calc.: 480.2723).

 $(1a,6\beta,7\beta,14\beta,15\beta,20R)$ -7a,20-*Epoxy*-20-*[*((3a,14 β)-14,16-*epoxy*-3-*hydroxy*-ent-*abieta*-7,15(17)-*dien*-18-yl)*oxy]*-ent-*kaur*-16-*ene*-1,6,7,14,15-*pentaol* (*Rubescensin* M; **5**). White amorphous powder. [a]_D²⁰ = -22.5 (c = 0.355, MeOH). UV (MeOH): 205 (4.34). IR (KBr): 3417, 2932, 2863, 1357, 1253, 1171, 1087, 1017, 981, 896. ¹H- and ¹³C-NMR: see *Table 3*. FAB-MS: 683 ([M+1]⁺), 365 ([M_{sb} – H₂O + 1]⁺). HR-FAB-MS: 683.4137 ([M + H]⁺, C₄₀H₅₉O⁺₉; calc.: 683.4159).

 $(3\alpha,7\beta)$ -ent-*Abieta-8(14),15(17)-diene-3,7,16,18-tetraol* (*Rubescensin P*; **6**). White amorphous powder. $[\alpha]_{D}^{27} = +72.9 (c = 0.29, MeOH). UV (MeOH): 204 (3.87). IR (KBr): 3291, 2936, 2863, 1387, 1307, 1052. ¹H- and ¹³C-NMR: see$ *Table 2*. EI-MS: 336 (1,*M*⁺), 318 (18), 300 (8), 282 (3), 269 (6), 251 (4), 241 (20), 162 (20), 149 (100). HR-EI-MS: 336.2312 (*M*⁺, C₂₀H₃₂O₄⁺; calc.: 336.2301).

 $(3a,14\beta)-3,18-[(1-Methylethane-1,1-diyl)dioxy]-ent-abieta-7,15(17)-diene-14,16-diol ($ **7**). White amorphous powder. [a]_D²⁷ = +20.8 (c = 0.35, MeOH). UV (MeOH): 204 (3.39). IR (KBr): 3442, 2933, 2861, 1559, 1540, 1507, 1457, 1382, 1207, 1096. ¹H-NMR (C₅D₅N, 400 MHz): 5.62 (br. s, H-C(7)); 5.57 (br. s, H_a-C(17)); 5.28 (br. s, H_b-C(17)); 4.65 (d, J = 14.0, H_a-C(16)); 4.57 (br. s, H_a-C(14)); 4.56 (d, J = 14.0, H_b-C(16)); 3.50 (overlapped, H_β-C(3)); 3.48 (d, J = 10.6, H_a-C(18)); 3.26 (d, J = 10.6, H_b-C(18)); 2.47 (br. d, J = 12.4, H_a-C(13)); 2.31 (overlapped, H_β-C(9)); 2.27, 1.65 (2m, CH₂(12)); 1.88-1.83 (overlapped, CH₂(6)); 1.82, 1.62 (2m, CH₂(2)); 1.78, 1.10 (2m, CH₂(1)); 1.70, 1.18 (2m, CH₂(11)); 1.21 (s, Me(19)); 0.98 (dd, J = 12.0, 4.4, H_β-C(5)); 0.81 (s, Me(20)). ¹³C-NMR (C₅D₅N, 100 MHz): see*Table 1*. EI-MS: 376 (70, M⁺), 361 (62), 358 (35), 343 (20), 340 (45), 300 (42), 283 (30), 282 (30), 265 (46), 232 (30), 167 (66), 149 (88), 55 (100). HR-EI-MS: 376.2621 (M⁺, C₂₃H₃₆O⁺; calc.: 376.2614).

 $\begin{array}{l} (3a,14\beta)-14,16\mbox{-}Epoxy-3,18\mbox{-}[(1\mbox{-}methylethane-1,1\mbox{-}diyl)dioxy]\mbox{-}ent-abieta-7,15(17)\mbox{-}diene-14,16\mbox{-}diol\mbox{-}(8).\\ \label{eq:spectral} White amorphous powder. [a]_D^{3c}=+15.4\mbox{ (}c=0.29\mbox{,}C_3H_5N\mbox{N}\mbox{-}UV\mbox{(}MeOH\mbox{):} 204\mbox{ (}4.09\mbox{)}\mbox{.} IR\mbox{(}KBr\mbox{):} 3441, 2986, 2929, 2856, 1383, 1209, 1098, 1027\mbox{-}^{1}H\mbox{-}NMR\mbox{ (}C_3D_5N\mbox{,} 400\mbox{ MHz}\mbox{):} 5.80\mbox{ (}br.\mbox{,} H\mbox{-}C(7)\mbox{);} 5.02\mbox{ (}br.\mbox{,} H_a\mbox{-}C(17)\mbox{);} 4.54\mbox{ (}d,J\mbox{=}14.0\mbox{,} H_a\mbox{-}C(16)\mbox{);} 4.24\mbox{ (}d,J\mbox{=}14.0\mbox{,} H_b\mbox{-}C(16)\mbox{);} 4.54\mbox{ (}d,J\mbox{=}14.0\mbox{,} H_a\mbox{-}C(16)\mbox{);} 3.32\mbox{ (}d,J\mbox{=}10.6\mbox{,} H_b\mbox{-}C(18)\mbox{);} 2.39\mbox{ (}m\mbox{,} H_a\mbox{-}C(13)\mbox{);} 2.04\mbox{-}1.90\mbox{ (overlapped,} CH_2(6)\mbox{);} 1.98\mbox{ (overlapped,} H_{\beta}\mbox{-}C(9)\mbox{);} 1.84\mbox{,} 1.58\mbox{ (}2m\mbox{,} CH_2(2)\mbox{);} 1.72\mbox{,} 1.06\mbox{ (}2m\mbox{,} CH_2(1)\mbox{);} 1.93\mbox{,} 1.04\mbox{ (}2m\mbox{,} CH_2(11)\mbox{);} 1.60\mbox{,} 1.41\mbox{ (}2m\mbox{,} CH_2(12)\mbox{);} 1.22\mbox{ (}s\mbox{,} Me(19)\mbox{);} 1.06\mbox{ (}overlapped,\mbox{,} H_{\beta}\mbox{-}C(5)\mbox{);} 0.78\mbox{ (}s\mbox{,} Me(20)\mbox{).} {}^{13}\mbox{C-NMR}\mbox{ (}C_5D_5N\mbox{,} 100\mbox{ MHz}\mbox{):} see\mbox{ }Table\mbox{ 1. EI-MS:} 358\mbox{ (}68\mbox{,} M\mbox{+})\mbox{,} 343\mbox{,} 72\mbox{,} 330\mbox{ (}8)\mbox{,} 300\mbox{ (}30\mbox{,} 283\mbox{)} (50\mbox{,} 265\mbox{ (}30\mbox{)}\mbox{,} 149\mbox{ (}100\mbox{)}\mbox{.} FAB-MS:} 359\mbox{ (}[M\mbox{+}1]^+\mbox{)}\mbox{ HR-EI-MS:} 358.2521\mbox{ (}M\mbox{+}\mbox{,} C_{2}H_{3}\mbox{-}0_{3}\mbox{,} (ac)\mbox{,} 358\mbox{,} 250\mbox{)}. \end{}$

REFERENCES

- [1] Q. B. Han, S. X. Mei, B. Jiang, A. H. Zhao, H. D. Sun, Chin. J. Org. Chem. 2003, 23, 270.
- [2] Q. B. Han, B. Jiang, J. X. Zhang, Xue-Mei Niu, H. D. Sun, Helv. Chim. Acta 2003, 86, 773.
- [3] X. M. Niu, S. H. Li, Q. S. Zhao, S. X. Mei, Z. W. Lin, H. D. Sun, Y. Lu, C. Wang, Q. T. Zheng, *Helv. Chim. Acta* 2003, 86, 299.
- Y. H. Gong, in 'The ¹³C-NMR Data of Natural Organic Compounds', Yunnan Sciences and Technology Press, Kunming, 1986, p. 398.
- [5] Y. Takeda, K. Takeda, T. Fujita, H. D. Sun, Y. Minami, Chem. Pharm. Bull. 1990, 38, 439.
- [6] Y. Takeda, K. Takeda, T. Fujita, H. D. Sun, Y. Minami, *Phytochemistry* **1994**, *35*, 1513.
- [7] Q. B. Han, M. L. Li, S. H. Li, Y. K. Mou, Z. W. Lin, H. D. Sun, Chem. Pharm. Bull. 2003, 51, 790.
- [8] Y. Takeda, H. Otsuka, Stud. Nat. Prod. Chem. 1995, 15, 111.

Received November 19, 2003