New Eudesmane and Eremophilane Derivatives from *Laggera Alata*

Qun Xiong ZHENG1,2, Zhao Jun XU1, Xian Feng SUN2, Françoise GUÉRITTE4, Michele CESARIO4, Christopher H.K. CHENG5, Han Dong SUN2, Yu ZHAO1*

1Department of Traditional Chinese Medicine and Natural Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310031
2Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204
3Department of Food Science, Institute of Hangzhou Commerce, Hangzhou 310035
4Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette, France
5Department of Biochemistry, The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract: From the aerial part of *Laggera alata*, a novel eremophilanoloid (1) as well as two new eudesmanoids (2-3) were isolated. Their structures were elucidated by 2D-NMR technique and X-ray diffraction studies. The cytotoxic activities of these sesquiterpenes were also investigated.

Keywords: *Laggera alata*, sesquiterpene, eremophilanoloid, eudesmanoid, X-ray diffraction, cytotoxicity.

Laggera pterodonta and *Laggera alata* are the only two species of *Laggera* genus found in China. Both of them are used as traditional herbal medicines in southwestern China. Previous investigations of *L. pterodonta* have led to the isolation of 20 new eudesmane derivatives including some cytotoxic ones1,2. These interesting findings have prompted us to a phytochemical examination of *L. alata*. Three new compounds, along with 14 known compounds were isolated from the aerial part of the title plant.

Compound 1 was isolated as colorless needles, [α]25D - 83.3 (c 0.28, MeOH). Its HREIMS exhibited a [M]+ at m/z 248.141 (calcd. 248.1412) corresponding to a molecular formula C15H20O3. Its IR spectrum (KBr) revealed the presence of an allylic acid moiety (1707 cm–1)3. 13C-NMR indicated that it should contain a α,β-unsaturated ketone (δ 201.9, 146.3, 126.0). 1H-NMR featured it as an eremophilanoloid compound7: Me-14 (δ1.16, s, 3H), Me-15 (δ1.05, d, 3H, J=6.0 Hz). Apart from the exomethylene signals observed at δ 6.26 (br s, 1H) and 5.70 ppm (br s, 1H), another singlet appeared at δ 5.91 suggesting the presence of a trisubstituted olefin conjugated to a carbonyl group. Based on the above information, the presence of a 1(10)-en-2-one moiety in 1 was deduced. HMBC also revealed that the ketone carbonyl was on C-2 and the olefin carbons were on C-1 and C-10. The stereochemistry of H-7 was presumed to be axial from the coupling constant (δ2.64, dddd, 1H, J=12.0, 9.0, 4.5, 4.5 Hz). The

* E-mail: dryuzhao@zju.edu.cn
stereochemistry of Me-14 and Me-15 were deduced from the NOESY spectrum, from which clear correlations between H-14 and H-15; between H-14 and H-7α; as well as those between H-3α and H-15 could be observed (Figure 2). This was further supported by the CD spectrum that showed a positive Cotton effect at 245 nm and a negative one at 332 nm. The structure of 1 was finally ascertained by X-ray diffraction analysis (Figure 3).

Figure 1 The structures of compounds 1-3

Compound 2 was obtained as a colorless gum, \([\alpha]_D^{25} + 7.5\) (c 0.4, CHCl₃). Its molecular formula was determined as C₁₅H₂₀O₂ by the fact that the HREIMS exhibited a [M]+ at m/z 232.1459 (calcd. 232.1463). The ¹H and ¹³C-NMR spectra of 2 showed close similarity to those of 11-cinnamoylloxyl-3,5-dien-eudesmane (2a). However, the tertiary methyl signals of Me-12 and Me-13 in 2a were absent in the ¹H and ¹³C-NMR spectra of 2. Instead, signals of a methylene group was observed at δ 5.72 and 6.34 ppm, suggesting that the isopropyl group in 2a was replaced by an allylic acid moiety in 2. This was supported by the IR absorption band of 2 at 1693 cm⁻¹, and was further verified by the correlation peaks appearing at the 2D HMBC experiments. Since no correlation between H-14 and H-7 was observed in the 2D NOESY spectrum of 2, the configuration of H-7 should be of the α-orientation. Therefore, compound 2 was identified as 3,5,11(13)-trien-eudesma-12-oic acid.

Figure 2 Selective 2D-NOESY correlations of compounds 1

Compound 3 was isolated as colorless needles, \([\alpha]_D^{25} + 5.39\) (c 0.15, MeOH). The ¹H and ¹³C-NMR spectra of 3 bore close resemblance to those of ilicic acid. However, the methine carbon signal of C-5 (δ 55.8) in ilicic acid did not appear in the ¹³C-NMR spectrum of 3. Instead, an oxygenated quaternary carbon resonance exhibited at δ 76.8. In addition, the C-4 and C-6 of 3 were downfield shifted when comparing with those of
illicic acid\(^6\). These indicated that 3 was a 5-OH derivative of illicic acid, consistent with the presence of six methylene signals in the DEPT spectrum of 3. There was no correlation between H-14 and H-15 in the NOESY spectrum of 3, suggesting that the A/B ring in the molecular structure of 3 was cis-fused. The stereochemistry of H-7 was presumed to be axial from the coupling constants (83.49, dddd, J=12.5, 12.5, 4.5, 4.5 Hz). Therefore, the structure of 3 was identified as \(\beta\)-hydroxyillicic acid. This was finally confirmed by X-ray diffraction analysis (Figure 3).

Cytotoxicity tests were conducted on KB cells. All the three new compounds exhibited some cytotoxic effects with IC\(_{50}\) > 10\(^{-4}\) \(\mu\)M.

Figure 3 X-ray structures of compounds 1 and 3

Acknowledgments

This work was financed in part by the Life Sciences Special Fund of Chinese Academy of Sciences supported by the Ministry of Finance (STZ-00-24), the Yunnan Province Foundation of Applied Basic Research (2000C0072M), Chine-France PRA BT01-02, and the opening foundation from KIB, CAS. One of the authors (Y. Zhao) would also like to express his thankfulness to the Chinese Ministry of Education as well as to Mr. Ka-Shing Lee for a “Cheung Kong Scholar Chief Professorship” in Zhejiang University.

References
7. \(^{13}\)C-NMR spectral data of compounds 1-3. (1): C-1 – C-15: 126.0, 201.9, 42.9, 37.3, 41.7, 30.0, 33.8, 30.3, 40.7, 146.3, 170.2, 177.6, 123.6, 19.3, 15.7; (2): C-1 – C-15: 37.1, 22.8, 124.9, 131.0, 143.2, 121.6, 38.5, 26.3, 38.2, 31.3, 145.5, 126.0, 172.6, 23.4, 20.1; (3): C-1 – C-15: 38.8, 18.2, 38.7, 76.5, 76.8, 36.7, 38.3, 27.6, 35.2, 38.8, 148.4, 171.2, 122.4, 25.6, 26.8.
8. \(^1\)H-NMR spectral data of compounds 1-3. (1): 5.94 (br s, 1H, H-1); 2.34 m, H-3; 2.40 m, H-6\(^\alpha\); 1.98 m, H-6\(^\beta\); 2.63 (dddd 1H J=11.0, 11.0, 4.5, 4.5Hz, H-7\(^a\));
2.00 m, H-8; 2.76 (dddd 1H J=13.5, 11.0, 11.0, 4.5Hz, H-8'); 1.70 (ddd 1H J=13.5, 11.0, 4.5Hz, H-9α); 1.92 (ddd 1H J=13.5, 4.5, 4.5Hz, H-9β); 6.26 (br s, 1H H-13); 5.70 (br s, 1H H-13'); 1.16 (6.0), H-14; 1.05 d (6.0), H-15. (2): 1.60 m, H-1α; 2.05 m, H-1β; 2.06 ddd (12.5, 4.5, 4.5), H-2α; 2.64 ddd (12.5, 11.0, 4.5), H-2β; 5.56 br s, H-3; 5.39 br s, H-6; 3.42 (10.0, 7.5, 3.0), H-7α; 1.44 m, H-8α; 1.40 m, H-8β; 1.54 m, H-9α; 1.56 m, H-9β; 6.34 br s, H-13; 5.70 br s, H-13'; 1.00 s, H-14; 1.79 s, H-15. (3): 1.02 ddd (13.5, 4.8, 4.8), H-1α; 1.76 ddd (13.5, 11.0, 4.8), H-1β; 1.90 (ddd 1H J=13.5, 12.0, 7.0, 4.5Hz, H-2α); 1.68 (ddd 1H J=13.5, 7.0, 4.5, 4.5Hz, H-2β); 1.38 d(dd 1H J=13.5, 6.8, 4.5Hz); 2.68 (ddd 1H J=13.5, 12.0, 6.8Hz, H-3β); 2.06 (dd 1H J=13.5, 4.5Hz, H-6α); 1.48 (dd J=13.5, 12.0Hz, H-6β); 3.49 (ddd 1H J=12.0, 12.0, 4.5, 4.5Hz, H-7α); 1.18 m, H-8α; 1.72 m, H-8β; 1.70 (ddd 1H J=13.2, 9.8, 3.5Hz, H-9α); 1.28 (dd 1H, J=13.2, 3.5, 3.0Hz, H-9β); 6.10 (br s, H-13); 5.56 (br s, H-13'); 0.99 s, H-14; 1.26 s, H-15.

Received 15 July, 2002