Two New Monoterpene Diglycosides from Winchia calophylla A. DC

Wei Ming ZHU^{1, 2}, Bin Gui WANG¹, Wen Yi KANG¹, Xin HONG¹, Jun ZHOU¹, Xiao Jiang HAO¹*

¹ The State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 ² Department of Chemistry, Yunnan Normal University, Kunming 650092

Abstract: Two new monoterpene diglycosides, wincaloside A (1) and wincaloside B (2), along with loganin (3) were isolated from the stem barks of *Winchia calophylla* A. DC. The structures of 1 and 2 were established by spectroscopic and chemical methods.

Keywords: Winchia calophylla, Apocynaceae, monoterpene diglycosides, wincaloside.

Winchia calophylla A. DC. (Apocynaceae) is a traditional medicinal plant, distributed in Yunnan and Hainan Provinces of China, India, Burma and Indonesia¹. In Xishuangbanna, Yunnan Province, its stem barks were used in the treatment of chronic tracheitis in Dai Nationality². In order to search its relative bioactive components, we investigated the chemical constituents of this medicinal plant. The ethanol extracts of the stem barks of *W. calophylla* were subjected to repeated column chromatography over silica gel H, two new monoterpene diglycosides, wincaloside A (1) and wincaloside B (2) were obtained.

Compound (1) was obtained as a white powder, $[\alpha]_D^{22}$ -29.5 (*c* 2.00, C₅H₅N). The high resolution FAB⁻ MS exhibited the molecular ion peak at m/z 461.1939 (M⁺-1) corresponding to the molecular formula C₂₁H₃₄O₁₁ (calcd. 461.2022 for M⁺-H). The molecular and fragment ion peaks at m/z 462 (M⁺), 330 (462-132), 301 (462-161) and 169 (301-132 = 330-161) showed by EIMS implied there were a pentose and a hexose

^{*} E-mail: xjhao@mail.kib.ac.cn, xjhao@hotmail.com

moieties in this molecule, and the fragment ion peaks at m/z 197 (330-161+18=301-132+18) indicated the two glycose moieties formed a cycle with the

С	ΙΗ	¹³ C	HMBC ^b	'H-'H
				COSY
1	/	169.2	/	/
2	/	128.5	/	/
3	6.82 (t, J=7.3 Hz)	145.1	1, 2, 4, 5, 9	4
4	2.35 (ddd, 2H, J=6.7, 7.3, 13.0 Hz)	26.7	2, 3, 6, 7	3, 5
5	1.39 (m, 2H)	35.8	3, 4, 6, 7, 10	4,6
6	1.52 (m, J=6.5 Hz)	28.9	4, 5, 8, 10	5, 7, 10
7	1.64 (ddd, 2H, J=4.1, 6.4, 6.5 Hz)	36.6	5, 6, 8, 10	6, 8
8	3.71 (dd, J=4.9, 6.4 Hz), 3.76 (dd, J=4.1, 6.4 Hz)	68.2	6, 7, 1'	7
9	1.90 (s, 3H)	12.8	1, 2, 3	/
10	0.91 (d, 3H, J=6.5 Hz)	20.5	5, 6, 7	6
1'	4.25 (d, J=7.5 Hz)	103.7	8, 3'	2'
2'	3.14 (dd, J=7.5, 8.4 Hz)	75.2	1', 3'	1', 3'
3'	3.30 (dd, J=8.4, 8.9 Hz)	78.3	1', 4'	2', 4'
4'	3.28 (dd, J=4.6, 8.9 Hz)	71.1	5', 6'	3', 5'
5'	3.32 (t, J=4.6 Hz)	76.8	1', 4'	4', 6'
6'	3.96 (dd, 2H, J=4.6, 11.0 Hz)	67.2	1", 4', 5'	5'
1″	4.68 (s)	101.7	6', 3", 5"	2"
2″	3.85 (d, J=2.8 Hz)	69.0	3", 4"	1", 3"
3″	5.07 (br.s)	73.1	2", 5"	2", 4"
4″	4.12 (m)	63.9	3"	3", 5"
5″	3.50 (dd, J=4.9, 5.7 Hz), 3.94 (dd, J=4.8 Hz)	60.4	1", 3", 4"	4″

Table 1 The NMR Spectra Data of Compound $(1)^a$

^{*a* ¹}H, ¹³C NMR and HMBC, ¹H-¹H COSY spectra were obtained at 400 MHz, 100 MHz and 500 MHz, and recorded in CD₃OD at room temperature, respectively. Unless otherwise indicated, all proton signals integrated to 1 H.

^b Carbon atoms coupled with proton

aglycone whose composition was $C_{10}H_{18}O_3$ (M 196). And the fragment ion peaks at m/z 169 (197-18), 151 (169-18) and 123 (169-46) implied a hydroxyl and a carboxyl bored in the aglycone. Except for the characteristic signals of glycoses, its ¹H-NMR spectra showed a vinyl proton (δ 6.82, dd, 1H, J=7.3 Hz), a methylene bearing oxygen (δ 3.71, dd, 1H, J=4.1, 4.9 Hz and δ 3.76, dd, 1H, J=4.1, 7.9 Hz), a tertiary methyl (δ 1.90, s, 3H) and a secondary methyl (δ 0.91, d, 3H, J=6.5 Hz) which indicated **1** belonged to the lonitoside- type compounds³. Also the ¹³C-NMR spectra showed the signals of two methyls, four ethylenes one of which bore an oxygen, a methine, a vinyl methane, a vinyl quarter carbon and a ester carbonyl which indicated the aglycone of 1 was a carboxylic acid of monoterpene bearing a hydroxyl (Table 1). In HMBC experiments of 1, the following long-range correlations between ¹H and ¹³C were observed: between H-3 (\delta 6.82, t, 1H, J=7.3 Hz) and C-1 (δ 169.2), C-2 (δ 128.5), C-4 (δ 26.7), C-5 (δ 35.8) and C-9 (δ 12.8); between H-9 (δ 1.19, s, 1H) and C-1, C-2 and C-3 (δ 145.1); between H-10 (δ 0.91, d, 1H, J=6.5 Hz) and C-5, C-6 (δ 28.9), and C-7 (δ 36.7); between H-6 (δ 1.52, m, 1H, J=6.5 Hz) and C-4, C-6, C-7 and C-8 (δ 68.2). Besides, ¹H-¹H COSY spectra showed the connectivities between H-4 and H-5, between H-5 and H-6, between H-6 and H-7 and H-10, between H-7 and H-8. And its NOESY spectra did not show the long-range correlation between H-3 with H-9. All above mentioned supported the aglycone of **1** was 2,6-dimethyl-8-hydroxy-2*E*-octenoic acid. The anomeric protons at

Two New Monoterpene Diglycosides from Winchia calophylla A. DC 1031

 δ 4.25 (d, 1H, J=7.5 Hz) and δ 4.68 (s, 1H), and anomeric carbons at δ 103.7 and δ 101.7, indicated the hexose was β -D-glucopyranose and pentose was β -L-arabinopyranose. It's HMBC experiments showed the ${}^{1}\text{H}{}^{-13}\text{C}$ long-range correlations between H-1' (δ 4.25, d, 1H, J=7.5 Hz) and C-8 (δ 68.2), between H-8 (δ 3.71, dd, 1H, J=4.1, 4.9 Hz /3.76, dd, 1H, J=4.1, 7.9 Hz) and C-1' (δ 103.7), between H-6' (δ 3.96, dd, 1H, J=5.2, 5.8 Hz) and C-1" (δ 101.7), between H-1" (δ 4.68, s, 1H) and C-6' (δ 67.4) (**Table 1**), which indicated the biose was $6'-O-\beta$ -L-arabinopyranosyl- β -D-glucopyranose that formed the glucoside with 8-OH of the monoterpenoid acid. Hence, the H-3" and C-3" of the biose (δ 5.07 and δ 73.1, respectively) had obvious down-field shifts than those of β -L-arabinopyranose⁴ and methyl β -L-arabinopyranose⁵ (δ 3.6 and δ 70.7, respectively), which showed the 3"-OH formed ester with -COOH of the monoterpenoid acid. The absolute configuration of monoterpenoid acid was determined by the T. I wagawa's method¹⁴. On hydrolysis with 10% HCl, 2,6-dimethyl-8-hydroxy-2E-octenoic acid was produced, which showed negative optical rotation ($[\alpha]_{D}^{22}$ -6.7) that was agreement with that of 2E, 6S-dimethyl-8- hydroxy-2E-octenoic acid ⁶ and opposite to that of 2E, 6R-dimethyl-8-hydroxy-2E- octenoic acid⁷. Thus, the monoterpenoid acid in compound (1) was 2E, 6S-dimethyl-8- hydroxy-2E-octenoic acid. And compound (1) named as wincaloside A whose structure was elucidated as to be shown (Figure 1).

Compound (2), obtained as a white powder, $[\alpha]_{D}^{22}$ -34.0 (c 1.00, C₅H₅N). The high resolution EIMS exhibited the molecular ion peak at m/z 502.2420 corresponding to the molecular formula $C_{24}H_{38}O_{11}$ (calcd. 502.2414). Except for more 40 units than 1 in molecular weight, its EIMS, ¹H-NMR, ¹³C-NMR, HMBC, ¹H-¹H COSY (Table 2) and NOSEY spectra were very similar to those of 1, implying they belonged to the same kind of compounds. The ¹H- and ¹³C-NMR data of the anomeric protons and carbons at δ 4.11 (d, 1H, J = 7.8 Hz) and δ 103.5, δ 4.41 (d, 1H, J = 7.6 Hz) and δ 102.3 indicated the hexose was β -D-glucopyranose and pentose was α -L-arabinopyranose. Comparing with those of 1, the following fragment ion signals EIMS of 2 at m/z 369 (502-133), 340 (502-162), 329 (502-132-40-1), 312 (502-150-40) and 169 (340-132-40+1 = 329-161+1) showed a isopropylidene unit bore in the pentose moiety on the framework of 2; the ¹H-NMR spectra showed two signals of the tertiary methyls at δ 1.32 (s, 3H) and δ 1.52 (s, 3H) in high-field; the ¹³C-NMR (DEPT) spectra showed the signals of two methyls at δ 26.3 and δ 26.5 as well as a quaternary carbon at δ 111.3. HMBC spectra showed the 1 H- 13 C long-range correlations between H-3" (δ 4.26, m, 1H), H-4" (δ 4.25, m, 1H) and C-2" (& 111.3), and all of which indicated the 2-OH and 3-OH formed acetal with acetone in α -L-arabinopyranose. Besides, the ¹H-¹³C long-range correlations of HMBC between H-6' (3.86, dd, 1H, J = 2.0, 13.2 Hz, and 4.24, dd, 1H, J=4.5, 13.2 Hz) and C-1" (δ 102.3), between H-1" (δ 4.41, d, 1H, J = 7.6 Hz) and C-6' (δ 70.9) showed the biose was 6'-O- α -L-arabinopyranosyl- β -D-glucopyranose. And the ${}^{1}H^{-13}C$ long-range correlations between H-1' (δ 4.11, d, 1H, J = 7.8 Hz) and C-8 (δ 70.2), between H-8 (3.59, m, 1H, J = 5.7, 6.8 Hz) and C-1' (δ 103.5), between H-2" (δ 5.00, t, 1H, J = 7.6 \text{ Hz}) and C-1 (δ 168.6) indicated the 8-OH and carboxyl of 2E, 6S-dimethyl-8-hydroxy-2E-octenoic acid formed the glycoside and ester with the anomeric hydroxyl and 2"-OH of the biose, respectively. Thus, compound (2) named wincaloside B whose structure was elucidated as shown in Figure 1.

С	Η	¹³ C	HMBC ^b	'H-'H
				COSY
1	/	168.7	/	/
2	/	128.5	/	/
3	6.85 (t, J=7.2 Hz)	144.7	1, 2, 4, 5, 9	4
4	2.18 (m), 2.37 (m)	26.3	2, 3, 6, 7	3, 5
5	1.41 (m), 1.54 (m)	36.0	3, 4, 6, 7, 10	4,6
6	1.50 (m, J=5.9 Hz)	31.0	4, 5, 8, 10	5, 7, 10
7	1.45 (m)	36.4	5, 6, 8, 10	6, 8
8	3.59 (m, J=5.7, 6.8 Hz)	70.2	6, 7, 1'	7
9	1.83 (s, 3H)	12.7	1, 2, 3	/
10	0.98 (d, 3H, J=5.9 Hz)	22.7	5, 6, 7	6
1'	4.11 (d, J=7.8 Hz)	103.5	8, 2', 3'	2'
2'	3.10 (t, J=7.8, 9.2 Hz)	75.3	1', 3', 4'	1', 3'
3'	3.29 (dd, J=9.2 Hz)	78.2	1', 4'	2', 4'
4'	3.00 (t, J=9.2 Hz)	72.4	3', 6'	3', 5'
5'	3.33 (t, J=4.5, 9.2 Hz)	76.9	1', 3', 6'	4', 6'
6'	3.86 (dd, J=2.0, 13.2 Hz), 4.24 (dd, J=4.5,	70.9	1", 4'	5'
	13.2 Hz)			
1″	4.41 (d, J=7.6 Hz)	102.3	6', 3", 5"	2"
2″	5.00 (t, J=7.6 Hz)	75.0	1, 1", 3"	1", 3"
3″	4.26 (m)	78.1	1", 2"'	2", 4"
4″	4.25 (m)	75.2	3″	3", 5"
5″	3.87 (d, J=13.0 Hz), 4.19 (d, J=13.0 Hz)	64.3	1", 4"	4″
1‴	1.32 (s, 3H)	26.3	2′′′, 3′′′	/
2‴	/	111.3	/	/
3‴	1.52 (s, 3H)	28.1	1‴, 2‴	/

Table 2 The NMR spectra data of compound 2^{a}

^{*a* ¹}H, ¹³C NMR and HMBC, ¹H-¹H COSY spectra were obtained at 400 MHz, 100 MHz and 500 MHz, and recorded in CD₃OD at room temperature, respectively. Unless otherwise indicated, all proton signals integrated to 1 H. ^b Carbon atoms coupled with proton.

Acknowledgment

This work was financially supported by the National Natural Science Foundation for Outstanding Young Scientists to Prof. Xiao Jiang Hao (No. 39525025).

References

- Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. Flora 1. Reipublaris Sinicae (in Chinese), Science Press, Beijing, 1977, Tomus 63, p95.
- 2. The Public Health Bureau of Prefecture of Xishuangbanna. The Medicinal Records of Dai Nationality in Xishuangbanna. (Xishuangbanna. Daiyaozhi, in Chinese), 1980, Vol. 3, 168.
- R. T. Brown, B. E. N. Dauda, M. Kagndasamy, C. A. M. Santos, J. Chem. Soc. Perkin Trans. 3. 1, **1991**, 1539.
- 4. A. J. Benesi, C. J. Falzone, S. Banerjee, G. K. Farber, Carbohydr. Res. 1994, 258, 27.
- J. Reuben, J. Am. Chem. Soc. 1984, 106, 6180. 5.
- T. Iwagawa, T. Hase, Phytochemistry, 1983, 22 (1), 255. 6.
- 7. K. Yamaguchi, C. Shinohara, S. Kojima, M. Sodeoka, T. Tsuji, Biosci. Biotechnol. Biochem., **1999**, *63* (4), 731.

Received 21 October, 2002