## Three New C<sub>21</sub> Steroidal Glycosides from the Roots of *Cynanchum komarovii* Al.Iljinski

Li Qin WANG<sup>1</sup>, Yue Mao SHEN<sup>1</sup>, Yu Qing WEI<sup>2</sup>, Xing XU<sup>2</sup>, Jun ZHOU<sup>1</sup>\*

<sup>1</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Kunming 650204 <sup>2</sup>Ningxia Agriculture Bio-technological Key lab, Yinchuan 750002

**Abstract:** Three new  $C_{21}$  steroidal glycosides named komaroside A, komaroside B, komaroside C were isolated from the ethanolic extract of the roots of *Cynanchum komarovii* Al.Iljinski (Asclepiadaceae), their structures were determined by physiochemical and spectroscopic analysis.

Keywords: Cynanchum komarovii Al.Iljinski, Asclepiadaceae, komaroside A, B, C.

*Cynanchum komarovii* Al.Iljinski, is a shrub widely distributed in the northwest desert area of China. The chemical constituents of this plant have been investigated <sup>1,2</sup>. In order to further investigate the constituents of this plant, the roots (14.5kg) collected in *Ningxia Hui Autonomous District* were extracted with 95% EtOH. The alcoholic extract was partitioned between chloroform and water, the chloroform part was repeatedly chromatographied over silica gel, RP-18 and Sephadex LH-20 to afford three new compounds, their structures were determined by physiochemical and spectroscopic analysis, especially by 1D and 2D NMR spectroscopy.

Compound **1** was obtained as yellow amorphous,  $[\alpha]_D^{18.7}$  –19.6 (*c* 0.404, CH<sub>3</sub>OH), its molecular formula was determined as C<sub>34</sub>H<sub>50</sub>O<sub>14</sub> (681.3151, calcd. 681.3122) by its HRFABMS and NMR spectrum. Infrared (IR) absorptions at 3432 and 1735cm<sup>-1</sup> showed the presence of hydroxyl and ester groups which were supported by <sup>13</sup>C-NMR signals at  $\delta$  69.8,  $\delta$  175.3. The <sup>1</sup>H-NMR spectrum of **1** showed two methyl signals of the aglycone moiety at  $\delta_H$  0.90 (s, 3H, H-19), 1.53 (s, 3H, H-21), one olefinic proton



<sup>\*</sup> E-mail: jzhou@mail.kib.ac.cn

|                         | $1(\delta_{\mathrm{H}})$ | $1(\delta_{C})$               | $2(\delta_{\rm H})$   | $2(\delta_{\rm C})$ | $3(\delta_{\mathrm{H}})$ | <b>3</b> (δ <sub>C</sub> ) | HMBC(H C)  |
|-------------------------|--------------------------|-------------------------------|-----------------------|---------------------|--------------------------|----------------------------|------------|
| 1α<br>1β                | 2.42 m                   | 44.7                          | 2.45 m                | 44.8                | 1.79 m<br>0.95 m         | 36.5                       | 2, 3, 10   |
| $2\alpha$               | 1,22 111                 | 69.8                          | 1.22 111              | 69.9                | 1.42 m                   | 30.1                       | 1, 3       |
| $\frac{2\beta}{2\beta}$ | 3.97 m                   | 94.0                          | 4.06 m                | 05 1                | 2.10 m                   | 77 (                       | , -        |
| 3α                      | 3.64 m                   | 84.9                          | 3.62 m                | 85.1                | 3./2 m                   | //.0                       | 1          |
| 4α<br>4β                | 2.50 m<br>2.47 m         | 37.3                          | 2.58 m<br>2.44 m      | 37.5                | 2.63 m<br>2.47 m         | 39.1                       | 5          |
| 5                       | \                        | 139.7                         | \                     | 139.8               | \                        | 140.7                      | λ.         |
| 6                       | 5.44 m                   | 120.8                         | 5.45 m                | 120.9               | 5.44 m                   | 120.7.                     | 4, 7, 10   |
| 7α                      | 2.48 m                   | 28.4                          | 2.58 m                | 28.6                | 2.08 m                   | 30.0                       | 9          |
| 7β                      | 2.09 m                   | 52.0                          | 1.96 m<br>2.51 m      | 53.1                | 1.70 m<br>2.50 m         | 53.3                       | 10 11 12   |
| 9                       | 1.23 m                   | <i>32.9</i> .<br><i>4</i> 0.1 | 1.33 m                | 40 3                | 1.24m                    | 40.8                       | 10, 11, 12 |
| 10                      | \                        | 30 /                          | \                     | 39.6                | \                        | 38.8                       | 14         |
| 10<br>11a               | 1 33 m                   | 23.8                          | 1 32 m                | 23.0                | 1.42 m                   | 24.0                       | 9 10 12    |
| 11β                     | 2.47 m                   | 25.0                          | 2.52 m                | 23.)                | 2.60 m                   | 24.0                       | 9, 10, 12  |
| 12α                     | 2.65 m                   | 29.9                          | 2.63 m                | 30.1                | 2.63 m                   | 28.5                       | 13         |
| 12B                     | 2.11 m                   | 114 3                         | 2.17 m                | 114 5               | 2.16 m                   | 114 5                      | \          |
| 14                      | \<br>\                   | 175.3                         | 1                     | 175.5               | 1                        | 175.6                      | 1          |
| 1 <del>π</del><br>15α   | 4 25 m                   | 67.8                          | 4 33 m                | 67.8                | 4 28 m                   | 67.8                       | 17 20      |
| 15α<br>15β              | 3.95 m                   | 07.0                          | 3.95 m                | 07.0                | 3.97 m                   | 07.0                       | 17,20      |
| 16                      | 5.43 m                   | 75.5                          | 5.44 m                | 75.6                | 5.48 m                   | 75.6                       | 13, 14, 15 |
| 17                      | 3.52 overlap             | 56.1                          | 3.55 d, 8.7           | 56.2                | 3.56 d, 8.1              | 56.3                       |            |
| 18                      | 6.49 s                   | 143.8                         | 6.52 s                | 143.9               | 6.49 s                   | 143.9                      | 13, 18, 20 |
| 19                      | 0.90 s, 3H               | 18.5                          | 0.91 s, 3H            | 19.1                | 0.85 s, 3H               | 18.0                       | 1, 9, 10   |
| 20                      | \                        | 118.5                         | \                     | 118.6               | \                        | 118.6                      |            |
| 21                      | 1.53 s, 3H               | 24.8                          | 1.54 s, 3H            | 24.9                | 1.54 s, 3H               | 24.9                       | 17, 20     |
|                         |                          | B-D-ole                       |                       | β-D-ole             |                          | β-D-ole                    |            |
| 1'                      | 4.79 d, 9.2              | 98.8                          | 4.83 d, 7.4           | 99.2                | 4.81 d, 8.1              | 98.3                       | 2', 3      |
| 2′a                     | 1.78 dd,<br>10.8, 10.8   | 37.4                          | 1.92 dd,<br>9.4. 9.1  | 37.8                | 1.94 dd,<br>9.7. 8.9     | 38.0                       |            |
| 2'e                     | 2.43 m                   |                               | 2.48 m                |                     | 2.47 m                   |                            | 1', 3'     |
| 3'                      | 3.93 m                   | 79.3                          | 3.64 m                | 79.3                | 3.67 m                   | 79.6                       | \          |
| 4'                      | 3.73 m                   | 82.9                          | 3.88 m                | 82.9                | 3.85 m                   | 83.4                       | \          |
| 5'                      | 3.69 m                   | 72.1                          | 4.08 m                | 71.8                | 4.26 m                   | 71.8                       |            |
| 6'                      | 1.69 d<br>3H 5 3         | 18.5                          | 1.68 d,<br>3H 6 1     | 18.6                | 1.72 d,<br>3H 6.0        | 18.9                       | 4', 5'     |
| OMe                     | 3.53 s, 3H               | 57.2                          | 3.60 s, 3H            | 57.8                | 3.58 s, 3H               | 57.7                       | 3'         |
|                         |                          | B-D-glc                       |                       | β-D-glc             |                          | β-D-glc                    |            |
| 1″                      | 5.08 d, 7.3              | 104.4                         | 5.04 d, 7.7           | 104.4               | 5.04 d, 8.1              | 104.4                      | 4', 3"     |
| 2″                      | 3.95 m                   | 75.7                          | 3.93 m                | 75.7                | 4.15 m                   | 75.5                       | \          |
| 3″                      | 4.25 m                   | 78.1                          | 4.10 m                | 77.6                | 4.07 m                   | 77.6                       | \          |
| 4″                      | 4.20 m                   | 71.8                          | 4.22 m                | 71.8                | 4.21 m                   | 71.8                       | \          |
| 5″                      | 4.53 m                   | 78.5                          | 4.18,m                | 78.7                | 4.22 m                   | 78.7                       | \          |
| 6″                      | 4.20 m<br>4.53 d 11.3    | 62.9                          | 4.38 m<br>4.85 d 12 4 | 70.0                | 4.82 m<br>4.42 d 12 5    | 70.0                       | 1‴         |
|                         | т.33 u, 11.3             |                               | т.05 u, 12.4          | β-D-glc             | т.т2 u, 12.J             | β-D-glc                    |            |
| 1‴                      |                          |                               | 5.26 d, 8.1           | 105.2               | 5.24 d, 7.7              | 105.2                      | 4″         |
| 2"'                     |                          |                               | 4.35 m                | 75.6                | 4.25 m                   | 75.5                       | ١          |
| 3‴                      |                          |                               | 4.08 m                | 78.4                | 4.08 m                   | 78.3*                      | \          |
| 4″                      |                          |                               | 3.72 m                | 72.4                | 3.67 m                   | 72.2                       | \          |
| 5‴′                     |                          |                               | 4.01 m                | 78.4                | 4.16 m                   | 78.4*                      | \          |
| 6‴′                     |                          |                               | 4.55 d, 12.4          | 62.9                | 4.55 m                   | 62.9                       | ١          |
|                         |                          |                               | 4.38 m                |                     | 4.44 m                   |                            |            |

Table 1The  $^{1}$ HNMR(400 MHz) and  $^{13}$ CNMR(100 MHz) Spectral Data of 1, 2, 3<br/>( $\delta$  ppm, J Hz, in C<sub>5</sub>D<sub>5</sub>N)

\*Interchangeable

## 2 Three New C<sub>21</sub> Steroidal Glycosides from the Roots of Cynanchum komarovii Al.Iljinski

signals at  $\delta_{\rm H}$  5.44 (m, 1H, 6-CH), one olefinic deshielded proton at  $\delta_{\rm H}$  6.49 (s) assigned to the proton on the trisubstituted double bond, three protons adjacent to oxygen at  $\delta_H$ 3.95 (m), 4.25 (m), 5.43 (m), two hydroxy-methine proton at  $\delta_{\rm H}$  3.97, 3.64, all of these data were consistent with glaucogenin A<sup>3</sup>. And the <sup>13</sup>C-NMR spectral data were also very similar to those of glaucogenin  $A^3$ . Two sugars of  $\beta$ -linkage were revealed by the coupling constants of anomeric proton signals at  $\delta_{\rm H}$  5.08 (d, 1H, 7.3Hz), 4.79 (d, 1H, J=9.2Hz). The<sup>13</sup>C-NMR spectrum of 1 (Table 1) indicated the presence of oleandrose and glucose comparing with those of the methyl glycosides. The glycosidation shifts were observed at C-2 (-2.6 ppm), C-3 (+8.2 ppm), and C-4 (-2.8 ppm) in the aglycone moiety comparing with glaucogenin A<sup>3</sup>, therefore the sugar moiety was linked to the C-3 hydroxyl group of the aglycone. The HMBC and HMQC experiments of 1 showed <sup>1</sup>H-<sup>13</sup>C long-range correlation between the doublet at  $\delta_{\rm H}$  4.79 (β-D-ole H-1',  $\delta c$  98.8) and C-3 (&c 84.9 ppm), between  $\delta_{\rm H}$  5.08 ( $\beta$ -D-glc H-1", &c 104.4 ) and &c 82.9 ppm  $(\beta$ -D-ole C-4'), so the connection between the sugars was  $(1 \ 4)$ , the terminal sugar was glucose and the inner sugar was oleandrose respectively. Thus, the structure of 1 was proposed to be glaucogenin A  $3-O-\beta$ -D-glucopyranosyl-(1 4)- $\beta$ -D-oleandropyranoside, named komaroside A.

Compound **2** was obtained as yellow amorphous,  $[\alpha]_{D}^{21.0}$  –6.8 (*c* 0.293, C<sub>5</sub>H<sub>5</sub>N), its molecular formula was determined as C<sub>40</sub>H<sub>60</sub>O<sub>19</sub> (843.3655 [M-H], calad. 843.3651) by its HRFABMS and NMR spectrum. The <sup>1</sup>H-NMR spectrum of **2** showed three anomeric proton signals at  $\delta_{\rm H}$  5.26 (d, 1H, 8.1Hz), 5.04 (d, 1H, 7.7Hz), 4.83 (d, 1H, J=7.4Hz), indicating the presence of three sugars with β-linkage. The terminal β-D-glucopyranose signals were confirmed by HMBC and HMQC experiments. The NMR spectral data on the aglycone moiety of glycoside **2** were almost the same as those of **1** (**Table 1**). Therefore, **2** also consisted of glaucogenin A with sugar linkage at its C-3 hydroxyl group. The glycosidation shifts was observed at C-6 of the middle sugar β-D-glucose, to which the terminal glucose was linked. The other signals were nicely corresponded to those of **1**. The HMQC and HMBC experiments confirmed the 1 4 linkage between the inner oleandrose and the middle glucose, the 1 6 linkage between the middle glucose and the terminal glucose. Consequently the structure of **2** was deduced to be glaucogeinn A 3-*O*-β-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl-(1 4)-β-D-oleandropyranoside, named komaroside B.

Compound **3** was also obtained as yellow amorphous,  $[\alpha]_{\rm D}^{21.4}$  –28.9 (*c* 0.329, C<sub>5</sub>H<sub>5</sub>N), its molecular formula was determined as C<sub>40</sub>H<sub>60</sub>O<sub>18</sub> (827.3701 [M-H], calcd. 827.3695) by its HRFABMS and NMR spectrum. Comparing the <sup>1</sup>H-NMR spectrum of **3** with that of **2**, both were closely related except for the H-2 appeared as two protons at  $\delta$  1.42 and 2.10 which showed there was no hydroxyl group at C-2, and the H-1 shift slightly to high field, this fact was consistent with glaucogenin C<sup>4</sup>. Three sugars with  $\beta$ -linkage were revealed by the coupling constants of anomeric proton signals at  $\delta$ H 5.24 (d, 1H, 7.7Hz), 5.04 (d, 1H, 8.1Hz), 4.81 (d, 1H, 8.1Hz). The <sup>13</sup>C-NMR spectrum of **3** (**Table 1**) indicated the aglycone of **3** was very similar to those of glaucogenin C<sup>4</sup>, and the data of sugar moieties was closely to that of **2**. The HMQC and HMBC experiments also confirmed the sugar moieties of **3** was the same as that of **2**. The glycosidation shifts were observed at C-2 (-2.3 ppm), C-3 (+7.9 ppm), and C-4 (-2.7ppm) in the

## Li Qin WANG et al.

aglycone moiety comparing with glaucogenin C<sup>4</sup>, indicating that the sugar chain was linked to the C-3 hydroxyl group of the aglycone. From the above, the structure of 3was deduced to be glaucogenin C 3-O-\beta-D-glucopyranosyl-(1 6)-β-D-glucopyranosyl -(1 4)- $\beta$ -D-oleandropyranoside, named komaroside C.

## References

- 1. S. D. Fang, R. Zhang et al., Acta Botanica Sinica(in Chinese), 1989, 31 (12), 934.
- R. Zhang, S. D. Fang, et al., Acta Botanica Sinica(in Chinese), 1991, 33 (11), 870.
  Z. X. Zhang, J. Zhou, et al., Chem. Pharm. Bull, 1985, 33 (10), 4188.
- 4. Z. X. Zhang, J. Zhou, et al., Chem. Pharm. Bull, 1985, 33 (4), 1507.

Received 5 March, 2003