## A New Taxoid from Leaves and Branches of Taxus chinensis

## Fu Sheng WANG<sup>2</sup>, Li Yan PENG<sup>1</sup>, Yu ZHAO<sup>1</sup>, Qin Shi ZHAO<sup>1\*</sup>, Kun GU<sup>3</sup>, Han Dong SUN<sup>1</sup>

<sup>1</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Academia Sinica, Kunming 650204 <sup>2</sup>Pharmaceutical Department of Dali College, Dali 671000 <sup>3</sup>Department of Chemistry, Yunnan University, Kunming 650091

**Abstract:** A new taxoid, 2-deacetyl- $2\alpha$ ,  $14\beta$ -dihydroxybaccatin IV (1), was isolated from the leaves and branches of *Taxus chinensis* together with the known compound baccatin IV (2). The structure of the new compound was elucidated by spectroscopic techniques. The detailed <sup>13</sup>C NMR assignments of baccatin IV are reported for the first time.

Keywords: Taxoids, Taxus chinensis, 2-deacetyl-2a, 14β-dihydroxy-baccatin IV.

Ongoing study of the ethanolic extracts of the leaves and branches of *Taxus chinensis* collected in Sichuan Province, a new taxoid, 2-deacetyl- $2\alpha$ , 14 $\beta$ -dihydroxybaccatin IV (1) along with the known compound baccatin IV were isolated. Their structures were determined by means of spectral methods including 1D and 2D NMR spectroscopy.



2-Deacetyl-2 $\alpha$ , 14 $\beta$ -dihydroxybaccatin IV (1)<sup>1</sup>, has the molecular formula C<sub>30</sub> H<sub>42</sub> O<sub>14</sub> deduced from positive FABMS *m/z* 627 [M + H]<sup>+</sup>, <sup>1</sup>H, <sup>13</sup>C and DEPT NMR spectral data. The molecular formula was finally determined by HRFABMS (*m/z* 627.2646 [M+H]<sup>+</sup>, calc. 627.2653). The 1D NMR data (**Table 1**) indicated that **1** was very similar to baccatin IV (**2**)<sup>2</sup>. Compound **1** differed from **2** by the presence of the hydroxy group at C-14 and the acetyl group at C-2 in **2** was changed to hydroxy group. The chemical shifts of C-14 in compound **1** and **2** are different:  $\delta_C$  69.9 ppm in **1** and  $\delta_C$  36.9 ppm in **2**. Meanwhile, the upfield shift of H-2 $\beta$  from 5.65 (d, 5.8) in **2** to 4.23 (dd, 5.8,

<sup>\*</sup> E-mail: qinshizhao@hotmail.com

Fu Sheng WANG et al.

1.6) in **1** indicated that the hydroxy group at C-2 in **1** was replaced by the acetyl group at C-2 in **2**<sup>3</sup>. The relative upfield signal at  $\delta$  4.23 for H-2 and the signal at  $\delta$  3.98 for H-14 in **1** indicated that the hydroxy groups attached at C-2, C-14. Moreover, the HMBC correlations between H-14 and C-1, C-2, C-13, C-15; H-2 and C-1, C-8, C-14 in **1** also confirmed that the hydroxy groups attached at C-2, C-14. Finally, in its NOESY spectrum of **1**, the protons H-14/H-3, H-13/Me-16, H-2/H-9, Me-17 and H-9 showed correlations with each other, which indicated that H-2, H-14 possessed  $\beta$ ,  $\alpha$  orientation, respectively. Therefore, **1** was elucidated as 2-deacetyl-2 $\alpha$ , 14 $\beta$ -dihydroxybaccatin IV.

| Table 1 <sup>13</sup> C NMR and <sup>1</sup> H NMR spectral data of compound |
|------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|

|          | 2              | 2                       |          | 2                | 2                 |
|----------|----------------|-------------------------|----------|------------------|-------------------|
| Position | δ <sub>C</sub> | $\delta_{\rm H}$        | Position | $\delta_{\rm C}$ | $\delta_{\rm H}$  |
| 1        | 76.8 s         |                         | 16       | 28.5 q           | 1.20 (3H, s)      |
| 2        | 71.7 d         | 4.23 (1H, dd, 5.8, 1.6) | 17       | 24.0 q           | 1.65 (3H, s)      |
| 3        | 47.0 d         | 2.88 (1H, d, 5.8)       | 18       | 14.2 q           | 1.94 (3H, s)      |
| 4        | 82.7 s         |                         | 19       | 12.9 q           | 1.59 (3H, s)      |
| 5        | 84.1 d         | 4.87 (1H, d, 8.7)       | 20       | 78.2 t           | 4.45 (1H, d, 8.7) |
| 6        | 35.6 t         | 2.40 (1H, m)            |          |                  | 4.60 (1H, d, 8.7) |
|          |                | 1.80 (1H, m)            | OAc      | 169.3 s          |                   |
| 7        | 72.8 d         | 5.54 (1H, dd, 9.8, 7.5) |          | 170.2 s          |                   |
| 8        | 46.4 s         |                         |          | 170.7 s          |                   |
| 9        | 75.6 d         | 5.93 (1H, d, 11.3)      |          | 170.9 s          |                   |
| 10       | 71.4 d         | 6.11 (1H, d, 11.3)      |          | 171.4 s          |                   |
| 11       | 136.3 s        |                         | OAc      | 22.9 q           | 2.21 (3H, s)      |
| 12       | 138.5 s        |                         |          | 21.5 q           | 2.19 (3H, s)      |
| 13       | 79.4 d         | 6.07 (1H, brd, 6.6)     |          | 21.1 q           | 2.11 (3H, s)      |
| 14       | 69.9 d         | 3.98 (1H, brd, 6.6)     |          | 20.8 q           | 2.10 (3H, s)      |
| 15       | 43.2 s         |                         |          | 20.8 q           | 1.96 (3H, s)      |

<sup>13</sup>C NMR data were recorded in acetone- $d_6$  (100 MHz,  $\delta c$  in ppm), <sup>1</sup>H NMR data were recorded in acetone- $d_6$  (400 MHz,  $\delta_{\rm H}$  in ppm and J in Hz).

## Acknowledgment

This project was supported by the Special Supported Bioscience and Biotechnique Foundation of Academic Sinica (STZ-01-15).

## **References and Notes**

- 1. Compound **1**, colorless lamellar crystals, mp. 242-245°C,  $[\alpha]_{D}^{19.3}$ +26.19 (*c* 0.42, CHCl<sub>3</sub>). UV (CHCl<sub>3</sub>)  $\lambda_{max}$  nm (log  $\varepsilon$ ): 239 (3.14), 212 (2.88). IR (KBr) v (cm<sup>-1</sup>): 3473, 3419, 2927, 2856, 2362, 2338, 1707, 1635, 1437, 1374, 1271, 1231, 1093, 1020, 911, 744. Positive FABMS *m*/*z* (rel. int. %): 627 ([M+H]<sup>+</sup>, 57), 567 (100), 507 (15), 489 (3), 465 (6), 447 (19), 419 (9), 387 (8), 327 (4), 279 (64), 205 (6), 149 (53).
- 2. D. P. Della Casa de Marcano, T. G. Halsall, J. Chem. Soc., Chem. Commun., 1975, 365.
- 3. <sup>13</sup>C NMR data (100 MHz, acetone- $d_6$ ,  $\delta_C$  in ppm) of **2:** 77.7 (s, C-1), 70.2 (d, C-2), 47.9 (d, C-3), 81.8 (s, C-4), 84.3 (d, C-5), 35.3 (t, C-6), 72.5 (d, C-7), 46.4 (s, C-8), 73.3 (d, C-9), 71.3 (d, C-10), 135.0 (s, C-11), 141.3 (s, C-12), 75.6 (d, C-13), 36.9 (t, C-14), 43.7 (s, C-15), 28.4 (q, C-16), 23.2 (q, C-17), 15.1 (q, C-18), 13.1 (q, C-19), 76.6 (t, C-20), 169.4 (s, OAc), 170.2 (s, OAc), 170.4 (s, OAc), 170.8 (s, OAc), 171.1 (s, OAc), 171.1 (s, OAc), 23.0 (q, OAc), 21.4 (q, OAc), 21.2 (q, OAc), 20.8 (q, OAc), 20.8 (q, OAc), 20.8 (q, OAc).

Received 17 March, 2003