Phytochemistry 71 (2010) 1360-1364

Contents lists available at ScienceDirect

Phytochemistry

journal homepage: www.elsevier.com/locate/phytochem

Update in Bioinformatics

Potent α -glucosidase inhibitors from the roots of *Panax japonicus* C. A. Meyer var. *major*

Hsiu-Hui Chan^a, Han-Dong Sun^b, Mopur Vijaya Bhaskar Reddy^a, Tian-Shung Wu^{a,c,*}

^a Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, ROC

^b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China ^c Department of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC

ARTICLE INFO

Article history: Received 28 September 2009 Received in revised form 1 April 2010 Available online 20 May 2010

Keywords: Araliaceae Panax japonicus C. A. Meyer var. major Zu-Tziseng Polyacetylene Acarbose α-Glucosidase inhibitors

ABSTRACT

Bioassay-guided fractionation of the CHCl₃ soluble portion of the roots of *Panax japonicus* C. A. Meyer var. *major* afforded an active fraction with inhibitory activity against baker's yeast α -glucosidase with an IC₅₀ value 1.02 mg/mL. Furthermore, the active fraction isolated contained three previously unreported poly-acetylenes, designated panaxjapynes A–C, together with 11 other compounds, including four polyacetylenes, five phenolic compounds, a sesquiterpenoid, and a sterol glucoside. The structures of the compounds were elucidated by spectroscopic and chemical methods. Compared with the control acarbose (IC₅₀ 677.97 μ M), six compounds were shown to be more potent α -glucosidase inhibitors with IC₅₀ values in the range 22.21–217.68 μ M.

Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved.

PHYTOCHEMISTRY

1. Introduction

The roots of Panax species (Araliaceae) are widely used either in Chinese herbal medicine or in food in Asian regions, primarily because it is well-known for its medicinal properties. Specifically, the active agents in the roots of *Panax* species include polyacetylenes and dammarane saponins. Research in the field of pharmacology of dammarane saponins has been investigated for decades, and ample knowledge regarding compounds such as ginsenoside-Re, -Rh1, -Rb1, and -Rg1 has been obtained (Cho et al., 2004, 2006; Lee et al., 2003a,b; Leung et al., 2007). In traditional Chinese medicine, the roots of Panax japonicus C. A. Meyer var. major (Chinese name: Zu-Tziseng or Zhuershen) are prescribed as an expectorant, an antitussive, a hemostatic, a mediate sedative, an analgesic and an antitussive (State Administration of Traditional Chinese Medicine, 1999). Generally speaking, the roots have been reported in pharmacological studies on ginseng saponins (Morita et al., 1982). In contrast with earlier investigations, research interests have increasingly shifted towards to polyacetylenes, and it has been reported that the Araliaceae family is notable as a rich source of C17 polyacetylenes (Satoh et al., 2007; Bernart et al., 1996). Polyacetylenes have been reported to demonstrate various biological activities, such as cytotoxicity and antiplatelet effects (Jung

* Corresponding author at: Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, ROC. Tel.: +886 6 2757575x65333; fax: +886 6 2740552.

0031-9422/\$ - see front matter Crown Copyright © 2010 Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.phytochem.2010.04.013

et al., 2002; Bernart et al., 1996; Teng et al., 1989). In addition, Wang et al. reported that falcarindiol, which is a C17 polyacetylene isolated from Aegiceras corniculatum, showed inhibitory activity towards PTP1B (Wang et al., 2006). PTP1B is a key element in the negative regulation of the insulin signaling pathway and plays an important role in diabetes. α -Glucosidase, an hydrolytic enzyme, is essential during digestion of carbohydrates and in biosynthesis of glycoproteins. Inhibitors of α -glucosidase may potentially reduce progression of diabetes by decreasing digestion and absorption of carbohydrates (Ma et al., 2008). Interestingly, this finding indicates that polyacetylenes have a potential positive effect on diabetes. Thus, we report the isolation and structure elucidation of three polyacetylenes, panaxjapyne A–C (1–3), together with 11 known compounds (4-14) from the active CHCl₃-soluble portion (PJC) of the roots of P. japonicus C. A. Meyer var. major. We also present an evaluation of the α -glucosidase inhibitory activities of the isolated compounds.

2. Results and discussion

The ethanolic extract of the roots of *P. japonicus* var. *major* exhibited α -glucosidase inhibitory activity with an IC₅₀ of 64.68 mg/mL. The crude ethanol extract was partitioned with CHCl₃ (PJC), *n*-BuOH (PJB) and H₂O (PJW), in successive extractions. The CHCl₃ fraction (PJC) showed α -glucosidase inhibitory activity with an IC₅₀ value of 1.02 mg/mL, while the PJB and the PJW extracts gave IC₅₀ >11.75 and >11.76 mg/mL. The active CHCl₃

E-mail address: tswu@mail.ncku.edu.tw (T.-S. Wu).

fraction was purified by column chromatography and HPLC using different solvent combinations, affording three panaxjapyne A–C (1–3) (Fig. 1) and 11 known compounds identified as (3R)-(–)-falcarinol (4) (Zheng et al., 1999), (3S,10S)-panaxydiol (5) (Hirakura et al., 1992), (3S,9R,10R)-panaxytriol (6) (Kobayashi et al., 1999), (3S,9R,10R)-gensenoyne C (7) (Hirakura et al., 1991; Satoh et al., 2002), docosyl *trans*-ferulate (8) (Kuo and Chen, 1999), vanillin (9) (Ito et al., 2001), syring-aldehyde (10) (Chen et al., 1997), 3,4,5-trimethoxy benzoic acid (11) (Chen et al., 1997), 2,6-dimethoxyphenol (12) (Goda et al., 1987), 1 β ,6 α -dihydroxy-4(14)eudesmene (13) (Hu et al., 1996) and β -sitosteryl β -D-glucoside (14) (Basent et al., 1993) by comparing their spectroscopic data with those reported in the literature.

Panaxjapyne A, compound (1), was obtained as a yellowish oil with a positive optical rotation ($[\alpha]_D$ +50.0). The HRESIMS of **1** exhibited a sodiated molecular ion peak at m/z 269.1880 $[M+Na]^+$, consistent with the molecular formula $C_{17}H_{26}O$. This was supported by the presence of 17 carbon signals in its ¹³C NMR spectrum. UV absorptions at 269 and 254 nm suggested the presence of a conjugated diyne in 1 (Hirakura et al., 1992), and an IR absorption for a triple bond was noted at 2234 cm⁻¹, and other bands were assigned to hydroxyl (3422 cm⁻¹) and olefinic (1679 cm⁻¹) groups. The ¹H NMR spectrum (Table 1) showed two olefinic proton doublets at δ 5.49 and 5.36, with a coupling constant of 10.4 Hz attributed to a double bond in the cis configuration. An oxymethine proton appeared at δ 4.34. The ¹³C NMR spectrum (Table 1) combined with HMQC experiments indicated four non-protonated alkyne carbons (δ 79.5, 76.7, 69.9 and 64.1), an oxygen-bearing carbon (δ 64.0), two olefinic carbon resonances (δ 133.0 and 122.0), two methyl groups (δ 9.3 and 14.1) and eight methylenes (δ 30.7, 31.8, 29.2 (C \times 3), 27.2, 22.6 and 17.6). A terminal methyl group at δ 1.00 (H-1) showed a ³J HMBC correlation with C-3 (δ 64.0) and ¹H–¹H COSY crosspeaks with the H-2 (δ 1.72) methylene protons. Furthermore, the HMBC spectrum showed ²J and ³J correlations of H-3 (δ 4.34) with C-4 (δ 76.7) and C-5 (δ 69.9), and H-8 (δ 3.01) with C-6 (δ 79.5) and C-7 (δ 64.1), indicating a conjugated divne system between C-3 and C-8. This finding was further confirmed by HMBC correlations of H-8 to C-9/C-10, H-11 (δ 2.01) to C-9/C-10/C-12/C-13, of the olefinic proton H-9 to C-7/C-8 and of the second terminal methyl group H-17 (δ 0.99) to C-15/C-16. The stereochemistry at C-3 was determined using a modified Mosher's method for elucidation of the absolute configuration of a secondary alcohol by application of ¹H NMR spectroscopy (Ohtani et al., 1991). Compound **1** was treated with (*S*)-(+)- and (*R*)-(-)- α -methoxyl- α -trifluoromethylpheny-lacetyl chloride (MTPA-Cl) to afford the (*R*)- and (*S*)-MTPA esters **1a** and **1b**, respectively. Analysis of the difference in chemical shifts of the neighboring protons H-1 (-0.026 ppm), H-2 (-0.068 ppm) and H-8 (+0.005 ppm) enabled assignment of the *S* configuration at C-3. On the basis of the above analysis, the structure of **1** was established as (*Z*)-heptadeca-9-en-4,6-diyn-(3*S*)-ol, and this compound has been named panaxjapyne A.

Panaxjapyne B, compound (2), was isolated as a yellowish oil with a negative optical rotation ($[\alpha]_D$ – 120.0). Its HRESIMS showed a sodiated molecular ion peak at m/z 285.1832 [M+Na]⁺, corresponding to the molecular formula C₁₇H₂₆O₂. The UV spectrum displayed typical absorption bands for a conjugated ene-yne-yne chromophore at λ_{max} 284, 268 and 254 nm (Hirakura et al., 1992), with IR absorption bands at 3391, 2230 and 1605 cm^{-1} due to hydroxyl, triple bond and olefinic functionalities, respectively. The ¹H NMR spectrum showed a pair of *trans* olefinic protons at δ 6.32 (dt, *J* = 15.0, 6.0 Hz) and 5.76 (d, *J* = 15.0 Hz) and two oxymethine protons at δ 4.42 (t, J = 6.5 Hz) and 4.19 (q, J = 6.0 Hz). The ¹³C NMR spectrum of **2** displayed 17 carbon resonances, including four non-protonated acetylenic carbons (δ 82.9, 76.7, 73.7 and 69.6), two oxygen-bearing carbons (δ 64.2 and 72.1), two olefinic carbons (δ 149.7 and 108.1), two methyl groups (\$ 14.1 and 9.3), and seven methylenes (\$ 36.9, 31.8, 30.7, 29.4, 29.2, 25.2 and 22.6). The downfield shift of the olefinic protons in 2 compared with those in 1 indicated that the double bond was in conjugation with the diyne, this being further supported by long range ${}^{3}J$ and ${}^{4}J$ correlations of H-8 (δ 5.76) with C-5 (δ 69.6) and C-6 (δ 73.7) in the HMBC spectrum. In addition, the oxymethine H-10 (δ 4.19, d, J = 6.0 Hz) displayed crosspeaks with H-9

Table 1
¹³ C (125 MHz) and ¹ H NMR (500 MHz) spectroscopic data for compounds 1–3 in CDCl ₃ .

No.	1		2		3	
	$\delta_{C}(m)$	δ _H , <i>m</i> (J, Hz)	$\delta_{C}(m)$	δ _H , m (J, Hz)	$\delta_{C}(m)$	δ _H , m (J, Hz)
1	9.3 (<i>q</i>)	1.00, <i>t</i> (7.4)	9.3 (<i>q</i>)	1.03, <i>t</i> (8.0)	9.3 (q)	1.01, <i>t</i> (7.0)
2	30.7 (<i>t</i>)	1.72, <i>m</i>	30.7 (<i>t</i>)	1.77, m	30.7 (d)	1.75, <i>m</i>
3	64.0 (<i>d</i>)	4.34, t (6.0)	64.2 (d)	4.42, t (6.5)	64.1 (<i>d</i>)	4.36, <i>t</i> (6.5)
4	76.7 (s)	-	82.9 (s)	-	77.3 (s)	-
5	69.9 (s)	-	69.6 (s)	-	69.5 (s)	-
6	79.5 (s)	-	73.7 (s)	-	66.7 (s)	-
7	64.1 (s)	-	76.7 (s)	-	77.3 (s)	-
8	17.6 (<i>t</i>)	3.01, <i>d</i> (6.8)	108.1 (d)	5.76, d (15.0)	25.0 (t)	2.60, dd (17.0, 5.5)
						2.55, dd (17.0, 5.5)
9	122.0 (d)	5.49, dt (6.8)	149.7 (d)	6.32, dd (15.0, 6.0)	72.1 (d)	3.64, <i>m</i>
10	133.0 (d)	5.36, dt (10.4, 7.0)	72.1 (d)	4.19, q (6.0)	73.0 (<i>d</i>)	3.60, <i>m</i>
11	27.2 (t)	2.01, q (7.0)	36.9 (<i>t</i>)	1.52, <i>m</i>	33.5 (<i>t</i>)	1.51, m
12	29.2 (<i>t</i>)	1.35, m	25.2 (<i>t</i>)	1.38, m	25.4 (<i>t</i>)	1.41, <i>m</i>
13	29.2 (t)	1.27, m	29.4 (<i>t</i>)	1.28, <i>m</i>	28.8 (t)	1.41, <i>m</i>
14	29.2 (t)	1.27, m	29.2 (t)	1.28, <i>m</i>	29.0 (t)	1.41, <i>m</i>
15	31.8 (t)	1.27, m	31.8 (t)	1.28, <i>m</i>	33.7 (<i>t</i>)	2.05, <i>m</i>
16	22.6 (t)	1.27, <i>m</i>	22.6 (<i>t</i>)	1.28, <i>m</i>	139.0 (t)	5.80, ddt (15.0, 10.4, 6.4)
17	14.1(q)	0.99, t (6.6)	14.1 (q)	0.88, t (5.0)	114.3 (d)	4.99, dd (15.0, 1.5)
						4.94, dd (10.4, 1.5)

 $(\delta 6.32, dd, J = 15.0, 6.0 Hz)$ and H-11 $(\delta 1.52, m)$ in the COSY spectrum. The HMBC experiment showed correlations of H-10 to C-8/C-9/C-11/C-12, and the C12-17 moieties were confirmed by analysis of COSY and HMBC spectra. Based on the above results, the structure of 2 was established as (E)-heptadeca-8-en-4,6-diyne-3,10diol, and this compound has been named panaxjapyne B. The absolute configuration of 2 was not elucidated because of a lack of material.

Panaxjapyne C (3) was obtained as a yellowish oil with a positive optical rotation ($[\alpha]_D$ +20.6). The HRESIMS exhibited a sodiated molecular ion peak at m/z 301.1778 [M+Na]⁺ corresponding to the molecular formula C₁₇H₂₆O₃. The UV absorption maxima at 269 and 256 nm suggested the presence of a conjugated diyne (Hirakura et al., 1992), whereas the IR spectrum contained hydroxyl (3399 cm^{-1}) , triple bond (2234 cm^{-1}) and double bond (1655 cm^{-1}) cm⁻¹) functionalities, respectively. The ¹H NMR spectrum showed terminal vinyl protons at δ 5.80 (ddt, *J* = 15.0, 10.4, 6.4 Hz), δ 4.99 (dd, J = 15.0, 1.5 Hz) and $\delta 4.94 (dd, J = 10.4, 1.5 \text{ Hz})$ as well as three oxymethine protons (δ 4.36, 3.64 and 3.60). The ¹³C NMR spectrum, aided by HMQC analysis, exhibited four non-protonated acetylene carbons (δ 77.3, 77.3, 69.5 and 66.7), three oxygen-bearing carbons (δ 73.0, 72.1 and 64.1), two olefinic carbons (δ 139.0 and 114.3), a methyl group (δ 9.3) and seven methylenes (δ 30.7, 29.0, 28.8, 25.4 and 25.0). The NMR spectroscopic data of 3 was similar to that of **1** except for the presence of signals corresponding to two oxymethine protons at δ 3.64 (m) and 3.60 (m) and terminal vinyl protons at δ 5.80, 4.99 and 4.94 in **3** instead of two *cis* coupled olefinic protons (δ 5.49 and 5.36) and a terminal methyl group (δ 0.99) in 1. This finding suggested that the olefinic double bond and the methyl group in 3 were hydroxylated and dehydrogenated, respectively. Key ¹H-¹H COSY correlations were also observed between H-9 (δ 3.64) and H-10 (δ 3.60), H-15 (δ 2.05, m) and H-16 (δ 5.80), and H-16 to H-17 (δ 4.99, 4.94) in the COSY spectrum. This assignment was further supported by HMBC correlations of H-8 (δ 2.60 and 2.55) to C-6 (δ 66.7)/C-7 (δ 77.3)/C-9 (δ 72.1)/C-10 (δ 73.0), H-10 (δ 3.60) to C-8/C-9/C-11/C-12 (δ 25.4) and H-17 (δ 4.99 and 4.94) to C-15 (δ 33.7). Thus, the structure of **3** was elucidated as heptadeca-16-en-4,6-diyne-3,9,10-triol, and this compound was named panaxjapyne C.

Because the 9,10-diol in panaxytriol (6) was presumed to be obtained from hydrolysis of its corresponding expoxy moiety, two stereochemical isomers, 9R,10R and 9S,10S, are possible. Recently, Satoh et al. synthesized four panaxytriol isomers [(3R,9R,10R), (3S,9R,10R), (3R,9S,10S), (3S,9S,10S)] and reported their optical rotation values of -18.6, +47.3, -47.3 and +17.6, respectively (Satoh et al., 2002). We also isolated panaxytriol (6) and recorded an optical rotation of $[\alpha]_{D}$ +46.7, and thus concluded that the absolute configuration of 6 was 3S, 9R, 10R. Furthermore, the optical rotation of **3** was $[\alpha]_{D}$ +20.6 and showed similar structural features to those of 6, thus the stereochemistry at C-3, C-9 and C-10 was assigned as S, S, S in compound 3.

Using the same method as applied to compound **7**, $[\alpha]_{D}$ +46.0, the absolute configurations were assigned as 3S,9R,10R. In addition, the absolute configuration of 3R in the known compound 4 $([\alpha]_{\rm D} - 30.6)$ was determined by Mosher's method, using the difference in the chemical shifts of H-1 (+0.066 ppm), H-2 (+0.087 ppm) and H-8 (-0.009 ppm). The stereochemical configurations 35,105 in compound 5 were obtained by comparison of the optical rotation ($[\alpha]_D$ – 36.1) with the literature value of – 33.8 (Kwon et al., 1997).

Compounds 1-14, excluding 2 and 11, were tested for their inhibitory effect on yeast α -glucosidase activity. Among them, **1**, **3**, **4**, **5**, **9** and **14** exhibited significant inhibition compared with the control drug acarbose (IC₅₀ 677.97 μ M), having IC₅₀ values of 71.82, 175.42, 67.78, 22.21, 217.68 and 75.00 µM, respectively (Table 2). Compound 1 (IC₅₀ 71.82 μ M) gave more potent inhibition values than 3 (IC₅₀ 175.42 μ M), indicating that the diols at C-9 and C-10 and the terminal vinylic group are responsible for decreasing α -glucosidase inhibitory activity. Furthermore, compound **5** (IC₅₀ 22.21 μ M) exhibits a strong inhibitory effects.

Table 2			
a. Chungaidean	:	off a at a	

Table 2						
α-Glucosidase	inhibitory	effects	of compounds	1, 3–5,	9 and	14.

Compounds	IC ₅₀ (μM)
1	71.82 ± 1.22
3	175.42 ± 5.84
4	67.78 ± 0.01
5	22.21 ± 1.73
9	217.68 ± 5.32
14	75.00 ± 17.11
Acarbose	677.97

Results are presented as means \pm SEM (n = 2-3).

Compounds 2 and 11 were not tested, and compounds 6-8, 10, 12 and 13 were inactive (IC₅₀ > 1 mM).

3. Concluding remarks

Three polyacetylene compounds, (1–3), previously unreported, and 11 other compounds (11–14) were isolated by bioassayguided fractionation of extracts of the roots of *P. japonicus* C. A. Meyer var. *major*. To the best of our knowledge, polyacetylenes isolated from *Panax* species have not been studied for their inhibitory effect on α -glucosidase activity, although a polyacetylenic acid isolated from the marine sponge *Callyspongia truncata* has been reported as an α -glucosidase inhibitor (Nakao et al., 2002). These findings show that there is an opportunity to develop polyacetylenes as possible antidiabetic agents or as dietary adjuncts to existing therapies.

4. Experimental

4.1. General procedures

IR spectra were recorded on a Shimadzu FTIR Prestige-21 spectrometer. Optical rotations were measured using a Jasco DIP-370 Polarimeter, whereas UV spectra were obtained on a Hitachi UV-3210 spectrophotometer. ESI and HRESI mass spectra were recorded on a Bruker APEX II mass spectrometer. NMR spectra, including ¹H, ¹³C, COSY, NOESY, HMBC and HMQC experiments, were acquired on Bruker AVANCE-500 and AMX-400 instruments, using tetramethylsilane (TMS) as an internal standard; all chemical shifts are reported in parts per million (ppm, δ). Silica gel (E. Merck 70–230, 230–400 mesh) was used for column chromatography. RP-HPLC was carried out using a Shimadzu LC-8A pump and a SPD-10AV UV–Vis detector.

4.2. Plant material

The dried roots of *P. japonicus* var. *major* were collected in Yunnan province of China by Prof. H.D. Sun (State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences) in 2006. The material was identified by Prof. C.S. Kuoh (Department of Life Science, National Cheng Kung University), and a voucher specimen (TSWu 2006010) has been deposited in the Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.

4.3. Extraction and isolation

The dried roots of P. japonicus var. major (4.6 kg) were pulverized and extracted with EtOH (5 \times 10 L) for 6 h under conditions of reflux. The filtrate was concentrated under reduced pressure to obtain a crude ethanol extract (PJ, 1212 g), which was suspended in H₂O (1.5 L), and then partitioned with CHCl₃ (5 \times 1 L) and *n*-BuOH (6×1 L) to obtain CHCl₃- (PJC, 77 g), *n*-BuOH- (PJB, 482 g) and H₂O-soluble portions (PJW), respectively. The ethanol extract, CHCl₃-, n-BuOH- and H₂O-soluble portions of P. japonicus var. major were found to inhibit α -glucosidase activity with IC₅₀ values of 64.68, 1.02, >11.75 and >11.76 mg/mL, respectively. The active CHCl₃ extract was subjected to silica gel CC eluted with nhexane-EtOAc (6:1) in a step gradient, gradually increasing the polarity with EtOAc, to afford eight fractions (Fr. 1-8). Purification of Fr. 2 was accomplished by using silica gel CC and eluted with *n*hexane-EtOAc (9:1), followed by purification using reversed-phase HPLC and elution with MeOH-H₂O (82:18, v/v) to yield 1 (8.1 mg), 2 (1.9 mg), 4 (232 mg) and 5 (5.2 mg). Fr. 3 was purified by silica gel CC eluted with *n*-hexane-EtOAc (6:1) to obtain **4** (54 mg) and 8 (3.3 mg), whereas Fr. 4 was subjected to silica gel CC eluted with n-hexane-CHCl₃ (1:2) to afford **12** (2.3 mg). Fr. 5 was separated using silica gel CC eluted with *n*-hexane–CHCl₃ (1:2) and further purified by reversed phase HPLC eluted with MeOH–H₂O (72:28, v/v) to afford **3** (8.2 mg), **6** (1.6 mg), **7** (8.0 mg), **9** (4.1 mg), **10** (7.8 mg), **11** (2.1 mg) and **13** (2.1 mg). Fr. 7 was purified over a silica gel CC eluted with EtOAc–MeOH (29:1) to obtain **14** (137.1 mg).

4.4. Panaxjapyne A (1)

Yellow oil; $[\alpha]_D$ +50.0 (*c* 0.02, MeOH); UV (MeOH) (log ε) λ_{max} nm: 269 (1.4), 254 (1.2), 216 (2.9), 206 (1.0); IR (KBr) ν_{max} cm⁻¹: 3422, 3055, 3024, 2234, 1679, 1285, 1227, 1015, 968; for ¹H (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectroscopic data, see Table 1; ESI-MS *m/z*: 269 [M+Na]⁺, 231; HRESI-MS *m/z*: 269.1880 [M+Na]⁺ (calc. 269.1881).

4.5. Panaxjapyne B (2)

Yellow oil; $[\alpha]_D - 120.0 (c \ 0.01, MeOH); UV (MeOH) (log <math>\varepsilon$) λ_{max} nm: 284 (3.6), 268 (3.7), 254 (3.6), 215 (4.0), 206 (4.4); IR(KBr) v_{max} cm⁻¹: 3391, 2928, 2855, 2230, 1713, 1605, 1462, 1286, 922; for ¹H (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectroscopic data, see Table 1; ESI-MS *m/z*: 285 [M+Na]⁺; HRESI-MS *m/z*: 285.1832 [M+Na]⁺ (calc. 285.1830).

4.6. Panaxjapyne C (3)

Yellow oil; $[\alpha]_D$ +20.6 (*c* 0.02, MeOH); UV (MeOH) (log ε) λ_{max} nm: 269 (3.1), 256 (3.2), 243 (3.2), 207 (3.6); IR(KBr) v_{max} cm⁻¹: 3399, 2882, 2854, 2234, 1740, 1655, 1231, 1045, 1022, 980; for ¹H (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectroscopic data, see Table 1; ESI-MS *m/z*: 301 [M+Na]⁺; HRESI-MS *m/z*: 301.1778 [M+Na]⁺ (calc. 301.1780).

4.7. α-Glucosidase inhibitory assay

 α -Glucosidase inhibitory activity was determined by modification of the procedure previously reported by Matsui et al. (1996). Briefly, each well in 96-well plates contained 150 µL of 2 mM 4-nitrophenyl α -D-glucopyranoside (PNP-G) in 100 mM potassium phosphate buffer (pH 7.0) and 20 µL of the sample in DMSO. The reaction was initiated by the addition of 150 µL of the enzyme solution (32 mU/ml from baker's yeast purchased from Sigma Chemical Co.). The plates were incubated at 37 °C for 20 min. The absorbance of 4-nitrophenol released from PNP-G at 400 nm was measured by a µ Quant universal microplate spectrophotometer. The increase in absorbance (ΔA) was compared with that of the control (DMSO in place of sample solution) to calculate the inhibition.

Inhibition (%) = $(\Delta A_{control} - \Delta A_{sample}) / \Delta A_{control} \times 100\%$

The concentration of inhibition required for 50% of α -glucosidase activity under the assay conditions was defined as the IC₅₀ value.

Acknowledgments

The authors are grateful for financial support from the National Science Council of Republic of China awarded to T.-S. Wu.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.phytochem.2010.04.013.

References

- Basent, P., Kadota, S., Terashima, S., Shimizu, M., Namba, T., 1993. Two new αarylbenzofuran derivatives from hypoglycemic activity-bearing fractions of *Morus insignis*. Chem. Pharm. Bull. 41, 1238–1243.
- Bernart, M.W., Cardellina II, J.H., Balaschak, M.S., Alexander, M.R., Shoemaker, R.H., Boyd, M.R., 1996. Cytotoxic falcarinol oxylipins from *Dendropanax arboreus*. J. Nat. Prod. 59, 748–753.
- Chen, C.Y., Chang, F.R., Teng, C.M., Wu, Y.C., 1997. Cheritamine, a new *N*-fatty acyl tryptamine and other constituents from the stems of *Annona cherimola*. J. Chin. Chem. Soc. 46, 77–86.
- Cho, J.Y., Park, W., Lee, S., Ahn, W., Lee, Y., 2004. Ginsenoside-Rb1 from Panax ginseng C.A. Meyer activates estrogen receptor-alpha and -beta, independent of ligand binding. J. Clin. Endocrinol. Metab. 89, 3510–3515.
- Cho, W.C., Chung, W.S., Lee, S.K., Leung, A.W., Cheng, C.H., Yue, K.K., 2006. Ginsenoside Re of *Panax ginseng* possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550, 173–179.
- Goda, Y., Shibuya, M., Sankawa, U., 1987. Inhibitors of prostanglandin biosynthesis from Mucuna birdwoodiana. Chem. Pharm. Bull. 35, 2675–2677.
- Hirakura, K., Morita, M., Nakajima, K., Ikeya, Y., Mitsuhashi, H., 1991. Polyacetylenes from the root of *Panax ginseng*. Phytochemistry 30, 3327–3333.
- Hirakura, K., Morita, M., Nakajima, K., Ikeya, Y., Mitsuhashi, H., 1992. Three acetylenic compounds from the root of *Panax ginseng*. Phytochemistry 31, 899– 903.
- Hu, J.F., Bai, S.P., Jia, Z.J., 1996. Eudesmane sesquiterpenes from Artemisia eriopoda. Phytochemistry 43, 815–817.
- Ito, J., Chang, F.R., Wang, H.K., Park, Y.K., Ikegaki, M., Kilgore, N., Lee, K.H., 2001. Anti-AIDS agents. 48.1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from *Brazilian propolis*. J. Nat. Prod. 64, 1278–1281.
- Jung, H.J., Min, B.S., Park, J.Y., Kim, Y.H., Lee, H.K., Bae, K.H., 2002. Gymnasterkoreaynes A-F, cytotoxic polyacetylenes from *Gymnaster koraiensis*. J. Nat. Prod. 65, 897–901.
- Kobayashi, M., Mahmud, T., Umezome, T., Wang, W., Murakami, N., Kitagawa, I., 1999. The absolute stereostructures of the polyacetylenic constituents of *Ginseng Radix Rubra*. Tetrahedron 53, 15691–15710.
- Kuo, Y.H., Chen, W.C., 1999. Chemical constituent of the pericarp of *Platycladus orientalis*. J. Chin. Chem. Soc. 46, 819–824.
- Kwon, B.M., Ro, S.H., Kim, M.K., Nam, J.Y., Jung, H.J., Lee, I.R., Kim, Y.K., Bok, S.H., 1997. Polyacetylene analogs, isolated from hairy roots of *Panax ginseng*, inhibit Acyl-CoA: cholesterol acyltransferase. Planta Med. 63, 552–553.

- Lee, Y.J., Jin, Y.R., Lim, W.C., Ji, S.M., Choi, S., Jang, S., Lee, S.K., 2003a. A ginsenoside-Rh1, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. J. Steroid Biochem. Mol. Biol. 84, 463– 468.
- Lee, Y.J., Jin, Y.R., Lim, W.C., Park, W.K., Cho, J.Y., Jang, S.Y., Lee, S.K., 2003b. Ginsenoside-Rb1 acts as a weak phytoestrogen in MCF-7 human breast cancer cells. Arch. Pharmacol. Res. 26, 58–63.
- Leung, K.W., Yung, K.K., Mak, N.K., Chan, Y.S., Fan, T.P., Wong, R.N., 2007. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology 52, 827–835.
- Ma, C.M., Hattori, M., Daneshtalab, M., Wang, L., 2008. Chlorogenic acid derivatives with alkyl chains of different lengths and orientations: potent alphaglucosidase inhibitors. J. Med. Chem. 51, 6188–6194.
- Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., Osajima, Y., 1996. In vitro survey of αglucosidase inhibitory food components. Biosci. Biotech. Biochem. 60, 2019– 2022.
- Morita, T., Kasai, R., Tanaka, O., Zhou, J., Yang, T.R., Shoji, J., 1982. Saponins of Zu-Tziseng, rhizomes of *Panax japonicus* C.A. Meyer var. *major* (Burk.) C.Y. Wu et K.M. Feng, collected in Yunnan, China. Chem. Pharm. Bull. 30, 4341–4346.
- Nakao, Y., Uehara, T., Matunaga, S., Fusetani, N., van Soest, R.W.M., 2002. Callyspongynic acid, a polyacetylenic acid which inhibits α-glucosidase, from the marine sponge *Callyspongia truncata*. J. Nat. Prod. 65, 922–924.
- Ohtani, I., Dale, J.A., Mosher, H.S., 1991. High-field FT NMR application of Mosher's method. The absolute configurations of marine terpenoids. J. Am. Chem. Soc. 113, 4092–4096.
- Satoh, M., Ishii, M., Watanabe, M., Isobe, K., Uchiyama, T., Fujimoto, Y., 2002. Absolute structure of panaxytriol. Chem. Pharm. Bull. 50, 126–128.
- Satoh, Y., Satoh, M., Isobe, K., Mohri, K., Yoshida, Y., Fujimoto, Y., 2007. Studies on panax acetylenes: absolute structure of a new panax acetylene, and inhibitory effects of related acetylenes on the growth of L-1210 cells. Chem. Pharm. Bull. 55, 561–564.
- State Administration of Traditional Chinese Medicine, 1999. Zhuershen, vol. 5. Zhong-hua-ben-cao, Science and Technology Press, Shanghai, pp. 836–839.
- Teng, C.M., Kuo, S.C., Ko, F.N., Lee, J.C., Lee, L.G., Chen, S.C., Huang, T.F., 1989. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim. Biophys. Acta 990, 315–320.
- Wang, J.D., Dong, M.L., Zhang, W., Shen, X., Guo, Y.W., 2006. Chemical constituents of mangrove plant Aegiceras corniculatum. Chin. J. Nat. Med. 4, 275–277.
- Zheng, G., Lu, W., Aisa, H.A., Cai, J., 1999. Absolute configuration of falcarinol, a potent antitumor agent commonly occurring in plants. Tetrahedron Lett. 40, 2181–2182.