Three New Diarylheptanoids from Myrica nana

by Jun-Feng Wang^a)^b), Cun-Li Zhang^c), Qing Lu^a), Ya-Fang Yu^a), Hui-Min Zhong^b), Chun-Lin Long^a), and Yong-Xian Cheng^{*a})

 ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86-871-5223048; fax: +86-871-5223048; e-mail: yxcheng@mail.kib.ac.cn)
^b) College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, Shandong, P. R. China

^c) College of Sciences, Northwest A & F University, Yangling 712100, Shanxi, P. R. China

Three new cyclic diarylheptanoids myricananins F-H (1-3, resp.), along with five known ones, 4-8, were isolated from the roots of *Myrica nana*. Compound 3 has been obtained by *Nagai et al.* by reduction of porson with NaBH₄. In this work, compound 3 was isolated from natural origin for the first time. The structures of 1-8 were elucidated using spectroscopic methods.

Introduction. – *Myrica nana* CHEVAL. (Myricaceae) is an evergreen shrub, mainly distributed in Yunnan and Guizhou Provinces of P. R. China [1]. Its roots are used as the folk medicine for the treatment of bleeding, diarrhea, stomach pain, and skin diseases [2]. Several chemical constituents such as triterpenoids, flavonoids, tannins, and diarylheptanoids have been isolated from the bark of *Myrica* genus [3-10]. In our continuing research on cyclic diarylheptanoids of this plant [11], three new cyclic diarylheptanoids myricananins F–H (1–3, resp.) along with five known ones, 4–8, have been isolated from the roots of *M. nana*. Here, we describe the isolation and structure elucidation of the new cyclic diarylheptanoids.

Results and Discussion. – Compound **1** was obtained as a white amorphous powder. The molecular formula was established as $C_{20}H_{24}O_4$ by a *pseudo*-molecular ion in the HR-ESI-MS (positive-ion mode; at *m/z* 351.1567 ([*M* + Na]⁺, calc. 351.1572)). The ¹Hand ¹³C-NMR spectroscopic data (*Tables 1* and 2, resp.) of **1** exhibited the signals of one MeO group, six CH₂ and six CH groups (including five olefinic ones), as well as seven quaternary C-atoms (all in the olefinic region). These data led us to presume that **1** is a biphenyl-type diarylheptanoid with one MeO and several OH groups. In the ¹H-NMR spectrum, the signals at δ (H) 6.91 (*d*, *J* = 8.3, 1 H), 7.09 (*dd*, *J* = 8.3, 2.2, 1 H), and 7.19 (*d*, *J* = 2.2, 1 H) indicated the presence of a typical *ABX* system. In addition, two *singlets* at δ (H) 6.67 (H–C(5)) and 6.81 (H–C(19)) in the olefinic region were also observed. The ¹H,¹H-COSY spectrum indicated the correlations from CH₂(7) to CH₂(13), and from H–C(15) to H–C(16). The HMBC spectrum showed the key correlations of CH₂(7) with C(5) and C(19), CH₂(13) with C(14), H–C(18) with C(2), C(13), C(15), and C(17), H–C(19) with C(1), C(3), and C(6), MeO with C(4) (*Fig. 1*). The above evidences established the planar structure of **1** as shown. The

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

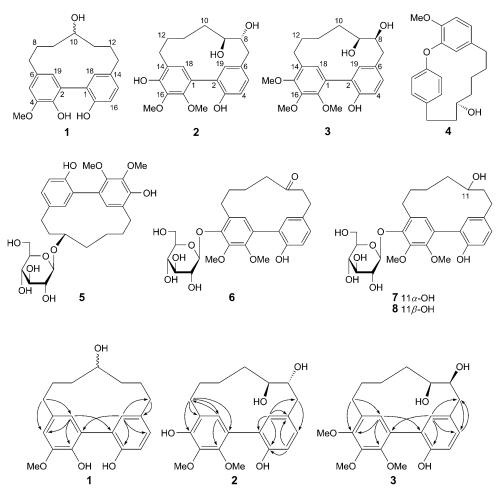


Fig. 1. Selected HMBC of compounds 1, 2, and 3

preferential conformation of **1** in CDCl₃ was determined by a ROESY experiment, which showed interactions of H-C(5) with $H_b-C(7)$, H-C(10) with H-C(18) and H-C(19), and H-C(19) with $H_a-C(9)$ and H-C(18) (*Fig. 2*), suggesting that these H-atoms are spacially adjacent. However, the absolute configuration at C(10) remained unknown. Unambiguous assignments of NMR signals of **1** were performed by careful analysis of HMQC, HMBC, and ROESY experiments. Consequently, the structure of **1** was assigned as 4-methoxytricyclo[12.3.1.1^{2.6}]nonadeca-1(18),2(19),3,5,14,16-hexaene-3,10,17-triol, with the trivial name myricananin F (**1**).

Compound **2** was isolated as an amorphous white powder. The molecular formula was established as $C_{21}H_{26}O_6$ by a *pseudo*-molecular-ion peak in the HR-ESI-MS (positive-ion mode; m/z 397.1611 ($[M + Na]^+$, calc. 397.1627)). The ¹³C-NMR spectrum of **2** (*Table 2*) was similar to that of **1**, suggesting **2** to be a cyclic

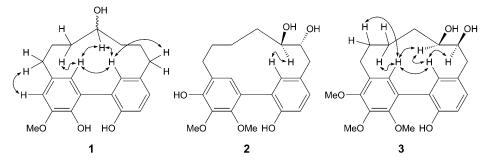


Fig. 2. Selected ROESY correlations of compounds 1, 2, and 3

Position	1 ^b)	2 ^c)	3 ^b)
4		6.75 (d, J = 8.5)	6.90 (d, J = 8.0)
5	6.67(s)	6.99 (dd, J = 8.5, 2.0)	7.07 (dd, J = 8.0, 1.6)
7	$2.89 - 2.93 (m, H_a),$	$3.01 - 3.06 (m, H_a),$	$3.11 (dd, J = 13.2, 3.2, H_a)$
	$2.48 - 2.55 (m, H_b)$	$3.01 - 3.06 (m, H_b)$	$2.88 - 2.95 (m, H_b)$
8	$1.82 - 2.01 (m, H_a),$	3.97 - 3.98(m)	4.33 (dd, J = 11.6, 3.6)
	$1.82 - 2.01 \ (m, H_{\rm b})$		
9	$1.66 - 1.74 (m, H_a),$	4.07 - 4.13 (m)	4.16 (d, J = 10.4)
	$1.52 - 1.59 (m, H_b)$		
10	4.12 (t, J = 9.6)	$2.13-2.20 (m, H_a),$	$2.29-2.37 (m, H_a),$
		$2.13 - 2.20 (m, H_b)$	$1.36 - 1.43 (m, H_b)$
11	$1.82 - 2.01 (m, H_a),$	$1.95 - 2.04 (m, H_a),$	$1.65 - 1.77 (m, H_a),$
	$1.52 - 1.59 (m, H_b)$	$1.95 - 2.04 \ (m, H_b)$	$1.65 - 1.77 (m, H_b)$
12	$2.89 - 2.93 (m, H_a),$	1.75 (br. s, H_a),	$1.88 - 1.98 (m, H_a),$
	$2.89 - 2.93 (m, H_b)$	$1.75 (br. s, H_b)$	$1.88 - 1.98 (m, H_b)$
13	$2.28 - 2.36 (m, H_a),$	$2.57 - 2.68 (m, H_a),$	$3.83 (s, H_a),$
	$1.66 - 1.74 \ (m, H_b)$	$2.57 - 2.68 (m, H_b)$	$2.51 - 2.59 (m, H_b)$
15	7.09 (dd, J = 8.3, 2.2)		
16	6.91 (d, J = 8.3)		
18	7.19 (d, J = 2.2)	6.97 (s)	6.82 (s)
19	6.81 (s)	7.72 (d, J = 2.0)	7.00 (d, J = 1.6)
MeO-C(4)	3.92(s)		
MeO-C(15)			3.92(s)
MeO-C(16)		3.87(s)	3.97(s)
MeO-C(17)		3.88(s)	3.91(s)

Table 1. ¹*H*-*NMR Spectroscopic Data for Compounds* $1-3^{a}$)

 $^a)$ $^lH\text{-NMR}$ Data of 1 and 3 at 400 MHz, of 2 at 500 MHz. $^b)$ Measured in CDCl3. $^c)$ Measured in (D6)acetone.

diarylheptanoid. The signals at $\delta(H)$ 6.75 (d, J = 8.5, 1 H), 6.99 (dd, J = 8.5, 2.0, 1 H), and 7.72 (d, J = 2.0, 1 H) in the ¹H-NMR spectrum indicated the presence of a typical *ABX* system. ¹H,¹H-COSY spectrum implied two spin systems, which were CH₂(7) to CH₂(13) and H-C(4) to H-C(5). The substitution pattern of two phenyl moieties and the linkage of the aliphatic chain with the aromatic rings were established with the aid of HMBC. The HMBC spectrum of **2** showed the following key correlations (*Fig. 1*):

Position	1 ^b)	2 ^c)	3 ^b)
1	124.4 (s)	124.5(s)	127.0 (s)
2	124.8(s)	123.4 (s)	124.8(s)
3	138.9(s)	152.8(s)	151.9(s)
4	146.6 (s)	116.6(d)	117.1 (d)
5	110.1(d)	130.7(d)	130.1(d)
6	131.4 (s)	126.1(s)	128.9(s)
7	30.4(t)	38.1(t)	36.1(t)
8	26.6(t)	77.7 (d)	70.2(d)
9	22.8(t)	73.0(d)	68.8(d)
10	68.7(d)	36.2(t)	34.7 <i>(t)</i>
11	39.5(t)	25.5(t)	22.5(t)
12	26.9(t)	26.3(t)	25.9(t)
13	34.8(t)	27.2(t)	25.7(t)
14	130.8(s)	130.5(s)	129.4(s)
15	130.1(d)	149.6 (s)	152.2(s)
16	117.1(d)	140.3 (s)	145.5(s)
17	151.6 (s)	147.6 (s)	147.0(s)
18	133.5(d)	130.1(d)	129.1(d)
19	126.1(d)	136.5(d)	133.2(d)
MeO-C(4)	56.3(q)		
MeO-C(15)			60.6(q)
MeO-C(16)		61.7(q)	61.2(q)
MeO-C(17)		61.4(q)	61.8(q)

Table 2. ¹³C-NMR Spectroscopic Data for Compounds $1-3^{a}$)

^a) Assignments based on HMQC and HMBC correlations; ¹³C-NMR data of **1** and **3** at 100 MHz; of **2** at 125 MHz. ^b) In CDCl₃. ^c) In (D₆)acetone.

CH₂(13) with C(14), C(15), and C(18), CH₂(7) with C(5) and C(9), H-C(4) with C(3) and C(6), H-C(18) with C(1), C(13), and C(17), H-C(19) with C(2), C(3), C(6), and C(7), revealing the structure of **2** as shown. Comparison of the molecular composition and the NMR data of 2 with those of myricananin B [11] revealed that they are stereoisomers differing only in the configuration of C(8) and C(9). The two OH groups at C(8) and C(9) of **2** were spacially distant on the basis of the following evidences: *i*) significant downfield shifts of C(8) and C(9) in 2 compared to those of myricananin B, which may be due to the absence of steric compression effects of two vicinal OH groups in 2. *ii*) In comparison of the 1 H, 1 H-COSY spectra, H–C(8) exhibited no response to H-C(9) in myricananin B, but a strong coupling between H-C(8) and H-C(9) in 2, suggesting HO-C(11) and HO-C(12) are not cofacial, in accordance with the difficulty for 2 to react with acetone, compared to myricananin B, of which an acetonide product can readily be obtained during isolation procedures. Likewise, the preferential conformation of 2 in (D₆)acetone was determined by the observed ROESY interactions, which were H-C(19) with H-C(9) and H-C(13) with H_b -C(11) (Fig. 2). The absolute configuration at C(8) and C(9) remain still unknown. Accordingly, the structure of 2 was assigned as $(8R^*,9S^*)$ -16,17-dimethoxytricyclo[12.3.1.1^{2,6}]nonadeca-1(18),2(19),3,5,14,16-hexaene-3,8,9,15-tetrol, with the trivial name myricananin G (2).

Compound 3 was obtained as colorless crystals. The molecular formula was established as $C_{22}H_{28}O_6$ by a *pseudo*-molecular ion in the HR-ESI-MS (positive-ion mode) at m/z 411.1785 ($[M + Na]^+$, calc. 411.1784). The similarity of the ¹H- and ¹³C-NMR spectra of **3** (*Tables 1* and 2, resp.) with those of **2** suggested that they are analogues. On inspection of HMBC interactions (Fig. 1), it was found that the main difference between 2 and 3 occurred at one Ph group. The HMBC correlations of $CH_2(13)$ with C(15), C(16), and C(18), H-C(18) with C(2), C(15), and C(17), and three MeO groups at $\delta(H)$ 3.92, 3.97, and 3.91 with C(15), C(16), and C(17), respectively, indicated a 15,16,17-trimethoxy substitution pattern in 3. Further, the two OH groups at C(8) and C(9) were presumed to be both β -oriented, which was supported by the observation of H-C(8) showing no response to H-C(9) in the ¹H,¹H-COSY spectrum of **3** similar to that of myricananin B, suggesting the dihedral angle of H-C(8)-C(9)-H approaching to 90°. In addition, comparison of the chemical shifts of C(8) and C(9) of myricananins A and B, 2 and 3 also revealed that two OH groups in **3** should be β -oriented. Actually, the spectroscopic data of **3** was in agreement with those of one dihydro derivative of porson which has been obtained by Nagai et al. through reduction of porson with $NaBH_4$ [12]. However, as a new natural product, **3** was isolated from this species for the first time. In the same manner, the preferential conformation of 3 in CDCl₃ was determined by ROESY experiments, which showed interactions of H-C(18) with H-C(9), H-C(11), H-C(12), and H-C(19), and of H-C(19) with H-C(8), H-C(9), and H-C(18) (Fig. 2). Thus, the structure of **3** was assigned as (85*,95*)-15,16,17-trimethoxytricyclo[12.3.1.1^{2,6}]nonadeca-1(18),2(19),3,5,14,16-hexaene-3,8,9-triol.

The known compounds were identified as accrogenin 2-methyl ether (4) [13], myricanol-11-O- β -D-glucopyranoside (5) [14], myricanone-5-O- β -D-glucopyranoside (6) [14], (+)-(S)-myricanol 5-O- β -D-glucopyranoside (7) [14], and myricanol glucoside (8) [14], by comparison with literature data. All these compounds were isolated from *M. nana* for the first time.

This work was financially supported by the following grants: A '*Talent Scholarship for the Youth of Yunnan*' (No. 2007PY01-48), '*Xi-Bu-Zhi-Guang' Project* from the Chinese Academy of Sciences, P. R. China.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, 10–40 µm, Qingdao Marine Chemical Inc., P. R. China), *RP-18* (40–63 µm, Daiso Co., Japan), Sephadex LH-20 (Amersham Biosciences, Sweden), and *MCI* gel CHP 20P (75–150 µm, Mitsubishikasei, Japan). TLC: silica gel GF₂₅₄ (10–40 µm, Qingdao Marine Chemical Factory, P. R. China). Melting points: *XRC-1* micro-melting point apparatus; uncorrected. Optical rotations: *JASCO-20C* digital polarimeter. UV Spectra: Shimadzu UV-2401PC spectrometer; λ_{max} in nm. IR Spectra: Bruker Tensor 27 FT-IR spectrophotometer; KBr pellets; in cm⁻¹. NMR Spectra: Bruker AM-400 spectrometer; chemical shift δ in ppm relative to Me₄Si as an internal reference, and coupling constant J in Hz. ¹H,¹H-COSY, HMQC, and HMBC spectra: DRX-500 spectrometer. MS: VG Auto Spec-3000 mass spectrometer; in *m/z*. HR-ESI-MS: API QSTAR Pulsar 1 spectrometer.

Plant Material. The roots of *M. nana* were collected from Songhua dam, a Kunming suburb of Yunnan Province, P. R. China, in May 2007. The species was identified by Prof. *Yumin Shui*, Kunming Institute of Botany, and a voucher specimen (CHYX0391-2) was deposited with the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, P. R. China.

Extraction and Isolation. The air-dried and powdered roots of M. nana (20 kg) were extracted three times with 80% EtOH under reflux. The extracts were concentrated and suspended in H₂O followed by successive partition with petroleum ether (PE; 3×1500 ml), AcOEt (3×1500 ml), and BuOH 1000 ml). The AcOEt extract (1100 g) was subjected to CC (SiO₂; CHCl₃/MeOH 1: $0 \rightarrow 0$:1): Frs. 1-5. Fr. 1 (78 g) was further eluted by CC (SiO₂; CHCl₃/MeOH 9:1): Frs. 1.1-1.3. Fr. 1.2 (8.3 g) was submitted to a *MCI* gel *CHP 20P* column (MeOH/H₂O 60 : $40 \rightarrow 100$: 0): *Frs. 1.2.1 – 1.2.4. Fr. 1.2.1* (2.6 g) was purified by CC (Sephadex LH-20; MeOH): 1 (8 mg) and 4 (4 mg). Fr. 2 (121 g) was subjected to CC (SiO₂; CHCl₃/MeOH 6:4): Frs. 2.1-2.4. Fr. 2.1 (13 g) was separated by CC (RP-18; MeOH/H₂O $50:50 \rightarrow 90:10$): Frs. 2.1.1 – 2.1.4. Fr. 2.1.4 (4.2 g) was purified by CC (Sephadex LH-20; MeOH/H₂O 1:1): 2 (23 mg) and 3 (3 mg). Fr. 3 (108 g) was subjected to CC (SiO₂; CHCl₃/MeOH 8:2): Frs. 3.1-3.4. Fr. 3.1 (9.2 g) was further separated by CC (*RP-18*; MeOH/H₂O 50:50 \rightarrow 100:0): Frs. 3.1.1-3.1.4. Fr. 3.1.3 (2.7 g) was purified by CC (Sephadex LH-20; MeOH): 5 (196 mg). Fr. 4 (119 g) was separated by CC (RP-18; MeOH/H₂O 50:50 \rightarrow 90:10): Frs. 4.1 – 4.4. Fr. 4.4 (12.3 g) was further purified by CC (RP-18; MeOH/H₂O 60: $40 \rightarrow 90$: 10): 6 (83 mg). Fr. 5 (98 g) was separated by CC (SiO₂; CHCl₃/MeOH 3:7): *Frs.* 5.1–5.4. *Fr.* 5.2 (3.9 g) was subjected to CC (*MCI gel CHP 20P*; MeOH/H₂O 50:50 \rightarrow 90:10): *Frs.* 5.2.1 – 5.2.4. *Fr.* 5.2.3 (1.9 g) was further purified by CC (*RP-18*; MeOH/H₂O $60:40 \rightarrow 90:10$): **7** (1.2 g) and 8 (980 mg).

Myricananin F (=4-*Methoxytricyclo*[*12.3.1.1*^{2.6}]*nonadeca*-*1*(*18*),2(*19*),3,5,*14*,*16*-*hexaene*-*3*,*10*,*17*-*tri*ol; **1**). Amorphous white powder. M.p. 169–171°. $[\alpha]_{16}^{26}$ = + 58.3 (c = 0.10, MeOH). UV (MeOH): 299 (3.93), 254 (4.05), 213 (4.55). IR (KBr): 3439, 2931, 1704, 1628, 1600, 1504, 1414, 1246. ¹H- and ¹³C-NMR: *Tables 1* and 2. ESI-MS (pos.): 328 (M^+). HR-ESI-MS (pos.): 351.1567 ($[M + Na]^+$, C₂₀H₂₄NaO[‡]; calc. 351.1572).

Myricananin G (= (8R*,9S*)-16,17-Dimethoxytricyclo[12.3.1.1^{2,6}]nonadeca-1(18),2(19),3,5,14,16hexaene-3,8,9,15-tetrol; **2**). Amorphous white powder. M.p. 223–225°. [a]_D²⁶ = -3.3 (c = 0.10, MeOH). UV (MeOH): 295 (3.80), 258 (4.01), 214 (4.53). IR (KBr): 3441, 2938, 1703, 1639, 1499, 1456, 1409, 1341, 1230. ¹H- and ¹³C-NMR: *Tables 1* and 2. ESI-MS (pos.): 374 (M⁺). HR-ESI-MS (pos.): 397.1611 ([M + Na]⁺, C₂₁H₂₆NaO₆⁺; calc. 397.1627).

Myricananin H (=(8\$,9\$)-15,16,17-Trimethoxytricyclo[12.3.1.1^{2,6}]nonadeca-1(18),2(19),3,5,14,16-hexaene-3,8,9-triol; **3**). Colorless crystals. M.p. 215–216°. $[a]_{26}^{26}$ =+14.8 (*c* = 0.14, MeOH). UV (MeOH): 295 (3.73), 283 (3.75), 253 (4.00), 214 (4.47). IR (KBr): 3460, 3364, 2927, 2862, 1723, 1460, 1400, 1334, 1227. ¹H- and ¹³C-NMR: *Tables 1* and 2. ESI-MS (pos.): 388 (*M*⁺). HR-ESI-MS (pos.): 411.1785 ([*M*+Na]⁺, C₂₂H₂₈NaO₆⁺; calc. 411.1784).

REFERENCES

- [1] K. R. Kuang, P. Q. Li, 'Flora of China', Science Publishing House, Beijing, 1979, Vol. 21, p. 6.
- [2] Yunnan Corporation of Materia Medica, 'Yunnan Zhongyao Ziyuan Minglu', Science Publishing House, Beijing, 1993, p. 68.
- [3] G.-I. Nonaka, M. Muta, I. Nishioka, *Phytochemistry* 1983, 22, 237.
- [4] N. Sakurai, Y. Yaguchi, T. Inoue, *Phytochemistry* 1987, 26, 217.
- [5] T. Inoue, Y. Arai, M. Nagai, Yakugaku Zasshi 1984, 104, 37.
- [6] Y. Takeda, T. Fujita, T. Shingu, C. Ogimi, Chem. Pharm. Bull. 1987, 35, 2569.
- [7] Y. Yaguchi, N. Sakurai, M. Nagai, T. Inoue, Chem. Pharm. Bull. 1988, 36, 1419.
- [8] N. Sakurai, Y. Yaguchi, T. Hirakawa, M. Nagai, T. Inoue, Phytochemistry 1991, 30, 3077.
- [9] T. Inoue, Yakugaku Zasshi 1993, 113, 181.
- [10] Z.-H. Zhou, C.-R. Yang, Acta Bot. Yunnan. 2000, 22, 219.
- [11] J. Wang, S. Dong, Y. Wang, Q. Lu, H. Zhong, G. Du, L. Zhang, Y. Cheng, *Bioorg. Med. Chem.* 2008, 16, 8510.
- [12] M. Nagai, J. Dohi, M. Morihara, N. Sakurai, Chem. Pharm. Bull. 1995, 43, 1674.
- [13] M. Nagai, M. Kubo, M. Fujita, T. Inoue, M. Matsuo, Chem. Pharm. Bull. 1978, 26, 2805.
- [14] J. Tao, T. Maorikawa, I. Toguchida, S. Ando, H. Matsuda, M. Yoshikawa, *Bioorg. Med. Chem.* 2002, 10, 4005.

Received January 26, 2009