
Two New Diterpenoid Lactams from Spiraea japonica var. ovalifolia

by Hai-Yang Liu, Wei Ni, Chang-Xiang Chen, Ying-Tong Di, and Xiao-Jiang Hao*

State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86-871-5223263; fax: +86-871-5223070; e-mail: haoxj@mail.kib.ac.cn)

Two new diterpenoid alkaloids, spiramilactams A (1) and B (2), were isolated from the basic fraction of a MeOH extract of whole plants of *Spiraea japonica* var. *ovalifolia*. Their structures were established on the basis of extensive spectroscopic and mass-spectrometric analyses.

Introduction. – The *Spiraea japonica* complex (Rosaceae) was shown to contain diterpenoid alkaloids and diterpenoids, containing 22 hetisine-type alkaloids, 37 atisine-type alkaloids, and eight atisane-type diterpenoids [1-3]. Among them, some atisine-type alkaloids displayed significant bioactivity concerning anti-inflammation, antiplatelet aggregation, and neuroprotective effects [4-7]. In our ongoing search for additional diterpenoid alkaloids from the above plant complex, a reinvestigation on the chemical constituents of *Spiraea japonica* var. *ovalifolia* collected in Songming County of Yunnan Province, P. R. China, led to the isolation of six compounds including two novel atisine-type diterpenoid lactams, spiramilactams A (1) and B (2), along with four known diterpenoid alkaloids, namely spiramines A–D. This is the first report of the diterpenoid alkaloids from the *S. japonica* complex with α -configuration for the HO–C(6) group. Details of the isolation and structural elucidation of the two new diterpenoid lactams are presented below.

Results and Discussion. – Spiramilactam A (1) was obtained as an optically active, white powder. The molecular formula was established as $C_{22}H_{31}NO_4$ by the HR-ESI-MS (m/z 374.2326 ([M + H]⁺; calc. 374.2331)). The IR spectrum indicated the presence of OH groups (3420 cm⁻¹), a CO group (1735 cm⁻¹), and a C=C bond (1632 cm⁻¹). The ¹H-NMR spectrum of 1 (*Table*) showed signals for one tertiary Me group at $\delta(H)$ 1.53 (s, Me(18)), one O-bearing CH₂ group at $\delta(H)$ 4.12 (t, CH₂(22)), an exo-CH₂ group at $\delta(H)$ 4.80 and 4.94 (2 br. s, CH₂(17)), and two O-bearing CH groups

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

at $\delta(H)$ 3.75 (d, H–C(7)) and 4.46 (dd, H–C(6)). The ¹³C-NMR and DEPT spectrum of 1 (*Table*) indicated 22 C-atom signals, consisting of one Me group, nine CH₂ groups, including one CH₂O group, six CH groups, including two O-CH groups, four quarternary C-atoms, including a CO group at $\delta(C)$ 175.4, and two olefinic resonances at $\delta(C)$ 108.0 (t) and 152.0 (s). The above-mentioned ¹H- and ¹³C-NMR data of **1** revealed that compound $\mathbf{1}$ was an atisine-type lactam derivative [8–11]. Comparison of the ¹H- and ¹³C-NMR spectral data of **1** with those of spiramine Y [8] showed that the two compounds possessed similar C-atom skeletons, except for the absence of an AcO group in the former compound. The two O-bearing CH groups at $\delta(C)$ 71.3 (C(6)) and 74.7 (C(7)) correlated with CH groups at $\delta(H)$ 4.46 (H–C(6)) and 3.75 (H–C(7)), respectively, in the HMQC experiments, and the two CH groups showed cross peaks in the ¹H, ¹H-COSY spectra, suggesting that their H-atoms are vicinal to each other. The correlations of H-C(7) with C(5), C(9), C(14), C(15), and C(20) in the HMBC spectrum confirmed that C(7) was connected to C(20) through an O-bridge. HMBC correlations of H-C(20) with C(5), C(19), and C(21) suggested that C(19), C(20), and C(21) were connected to each other through a N-atom. Further-

Table. ¹ H- and ¹³ C-NMR Data of Compounds 1 a	and 2 . In C_5D_5N ; δ in ppm, J in Hz.
--	---

	1 ^a)		2 ^b)	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	δ(C)
CH ₂ (1)	29.2 (t)	1.78 (dd, J = 5.0, 14.5),	29.1 (t)	1.89–1.86 (<i>m</i>), 1.37–1.35 (<i>m</i>)
		1.20 (ddd, J = 5.0, 6.5, 14.5)		
$CH_2(2)$	25.9 (t)	1.65 - 1.63 (m), 1.49 - 1.47 (m)	23.9 (t)	1.58 - 1.55 (m), 1.53 - 1.51 (m)
$CH_2(3)$	20.5 (t)	1.93 - 1.89(m), 1.46 - 1.42(m)	20.6 (t)	1.92 - 1.90 (m), 1.43 - 1.40 (m)
C(4)	44.2 (s)	-	44.3 (s)	-
H-C(5)	58.8(d)	1.60 - 1.58 (m)	59.4 (d)	1.76 (br. s)
H-C(6)	71.3 (d)	4.46 (dd, J = 2.8, 4.4)	71.7(d)	4.50 (dd, J = 1.2, 3.0)
H-C(7)	74.7(d)	3.75 (d, J = 4.4)	75.2 (d)	3.78 - 3.76(m)
C(8)	37.0 (s)	-	36.9 (s)	_
H-C(9)	46.7 (d)	1.70 (dd, J = 4.0, 8.5)	42.5 (d)	1.31 - 1.29(m)
C(10)	34.6 (s)	-	34.8(s)	-
$CH_{2}(11)$	40.0(t)	1.88 - 1.86(m), 1.40 - 1.37(m)	40.1(t)	1.84 - 1.81 (m), 1.32 - 1.30 (m)
H - C(12)	37.2 (d)	2.30(t, J = 4.5)	39.0 (d)	1.82 - 1.80 (m)
CH ₂ (13)	26.9(t)	1.61 - 1.59(m), 1.33 - 1.31(m)	23.7(t)	2.18-2.17 (m), 1.32-1.30 (m
$CH_{2}(14)$	27.4(t)	2.08 (dd, J = 2.0, 11.0),	27.6(t)	2.08-2.06 (m), 1.26-1.24 (m
		1.38 - 1.35(m)		
$CH_{2}(15)$	40.1 (t)	3.37 (d, J = 15.0),	47.6 (t)	1.44 - 1.46 (m)
		2.22 (d, J = 15.0)		
C(16)	152.0(s)	-	72.7(s)	-
$CH_2(17) / Me(17)$	108.0(t)	4.94 (br. s), 4.80 (br. s)	30.5(q)	1.47 (s)
Me(18)	21.6(q)	1.53 (s)	21.7(q)	1.53(s)
C(19)	175.4(s)	_	175.8(s)	_
H - C(20)	86.2 (d)	5.24 (d, J = 1.6)	86.7 (d)	5.30 (d, J = 1.7)
$CH_{2}(21)$	50.1(t)	4.32 (ddd, J=2.0, 6.0, 13.5),	50.2(t)	4.28 (ddd, J = 2.0, 5.6, 11.2),
,		3.71 (ddd, J = 2.0, 6.0, 13.5)		3.75 - 3.73(m)
$CH_{2}(22)$	60.9 (t)	4.12(t, J = 6.0)	60.9 (t)	4.13(t, J = 6.2)

more, analysis of the ¹H,¹H-COSY spectra of **1** established three other fragments: $CH_2(1)-CH_2(2)-CH_2(3)$, $CH(9)-CH_2(11)-CH(12)-CH_2(13)-CH_2(14)$, and $CH_2(21)-CH_2(22)$), as shown with bold bonds in *Fig. 1*. The location of the exo- CH_2 group at C(16) was supported by the correlations between $CH_2(17)$ (δ (H) 4.80, 4.94) and C(12), C(15), and C(16), while the presence of a CO group at C(19) was confirmed by the correlations of $CH_2(3)$, H-C(5), Me(18), H-C(20), and $CH_2(21)$ with the CO group (δ (C) 175.4). The relative configuration of **1** was elucidated by the help of a ROESY spectrum as shown in *Fig. 2*. The ROESY correlations of H-C(5)with H-C(6), H-C(7), and Me(18) implied the α -configuration for the 6-OH group and β -configuration for H-C(7). Thus, the structure of spiramilactam A (**1**) was elucidated to be as shown in **1**.

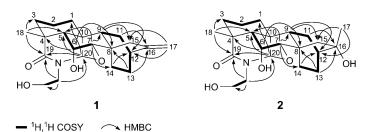


Fig. 1. Key ¹H,¹H-COSY and HMBC correlations of compounds 1 and 2

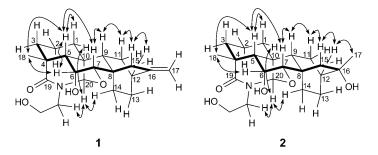


Fig. 2. Significant ROESY correlations within compounds 1 and 2

Spiramilactam B (2), obtained as a colorless gum, had the molecular formula of $C_{22}H_{33}NO_5$ as determined by a *pseudo*-molecular ion peak in the HR-ESI-MS (392.2440 ($[M + H]^+$; calc. 392.2436)). Step-by-step comparison of the ¹H- and ¹³C-NMR spectral data of 2 with those of 1 (*Table*) revealed that most signals of 2 were similar to those of spiramilactam A (1), except for the disappearance of an exocyclic C=C bond and the presence of an O-bearing quarternary C-atom ($\delta(C)$ 72.7, C(16)) and a tertiary Me group ($\delta(H)$ 1.47) in compound 2. Therefore, it was supposed that 2 was derived from 1 by hydroxylation at the exocyclic C=C bond, which was confirmed by the mass difference of $\Delta m/z = 18$ and the HMBC spectrum. In the HMBC spectrum of 2, correlations of Me(17) ($\delta(H)$ 1.47) with C(12), C(15), and C(16) were observed (*Fig. 1*). The relative configuration of the OH group attached at C(16) was determined

by a ROESY experiment (*Fig.* 2). The Me(17) signal showed ROESY correlations with H-C(12), suggesting β -orientation for Me(17). Therefore, the structure of spiramilactam B (2) was determined as shown in 2.

Experimental Part

General. MPLC: Büchi Pump Module C-605, Büchi Pump Manager C-615, and Büchi Fraction Collector C-660. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh; silica gel H, Qingdao Marine Chemical Ltd.Co.), or Sephadex LH-20 (Pharmacia). TLC: silica-gel plates; visualization by spraying with Dragendorff's reagent. Optical rotations: JASCO DIP-370 digital polarimeter. IR Spectra: Bio-Rad FTS-135 spectrometer, KBr pellets; in cm⁻¹. NMR Spectra: Bruker AM-400 instrument (¹H: 400, ¹³C: 100 MHz) or Bruker DRX-500 instrument (¹H: 500, ¹³C: 125 MHz); δ in ppm rel. to TMS as internal standard, J in Hz. EI-MS: VG Auto Spec-3000 mass spectrometer; in m/z. HR-ESI-MS: API Qstar Pulsar LC/TOF instrument.

Plant Material. The whole plants of *S. japonica* var. *ovalifolia* were collected in July 2007 from Songming, Yunnan Province, P. R. China, and identified by Dr. *Zhao-Yang Zhang* of Kunming Botanical Garden. A voucher specimen was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried whole plants of *S. japonica* var. *ovalifolia* (20 kg) were grounded and extracted with MeOH under reflux (3×50 l, each 3 h). The extracts were condensed *in vacuo* to afford a crude mixture which was dissolved in 3% HCl (51) soln. and filtered. The acidic soln. was basified with 5% aq. NaOH to pH 11 and then extracted with CHCl₃. Evaporation of CHCl₃ gave a crude alkaloid mixture (130 g) which was subjected to CC (SiO₂; petroleum ether (PE)/AcOEt/Et₃N 40:10:1 to 10:10:1) to five fractions (*Fr. I*–*V*). Repeated separation of *Fr. I* and *II* over SiO₂ by MPLC (PE/AcOEt/Et₃N 80:2:1 to 8:2:1) gave spiramines A (200 mg), B (150 mg), C (140 mg), and D (110 mg), and a mixture of spiramines A and B (4.5 g), as well as a mixture of spiramines C and D (2.3 g). *Fr. V* (3.0 g) was purified by repeated MPLC (silica gel *H*, PE/AcOEt/Et₃N 4:1:0.2 to 1:1:0.2) and *Sephadex LH-20* (CHCl₃/MeOH 1:1) to yield **1** (40 mg) and **2** (21 mg).

Spiramilactam A (=(6α , 7α)-6-Hydroxy-21-(2-hydroxyethyl)-4-methyl-7,20-epoxyatid-16-en-19-one; 1). White powder. [α]_D^B = -83.3 (c = 0.57, MeOH). IR (KBr): 3420, 2930, 2871, 1735, 1632, 1470, 1316, 1063, 1011, 885. ¹H- and ¹³C-NMR: *Table*. FAB-MS (pos.): 374 (100, [M + H]⁺). HR-ESI-MS: 374.2326 ([M + H]⁺, C₂₂H₃₂NO₄⁺; calc. 374.2326).

Spiramilactam B (= (6*a*,7*a*)-6,16-*Dihydroxy-21-(2-hydroxyethyl)-4-methyl-7,20-epoxyatidan-19-one*; **2**). Colorless gum. [*a*]₁^B = -53.2 (*c* = 0.85, MeOH). IR (film): 3406, 2985, 2878, 1593, 1474, 1346, 1066, 1011, 807, 765. ¹H- and ¹³C-NMR: *Table*. EI-MS: 391 (25, *M*⁺), 373 (29, [*M* – H₂O]⁺), 363 (100), 348 (83), 320 (33), 256 (38), 243 (88), 215 (36), 196 (95), 157 (35), 149 (55), 95 (57), 69 (66). HR-ESI-MS: 392.2440 ([*M* + H]⁺, C₂₂H₃₄NO⁺₃; calc. 392.2431).

REFERENCES

- [1] X. J. Hao, Y. M. Shen, L. Li, H. P. He, Curr. Med. Chem. 2003, 10, 2253.
- [2] L.-M. Fan, H.-P. He, Y.-M. Shen, X.-J. Hao, J. Integr. Plant Biol. 2005, 47, 120.
- [3] H.-Y. Liu, S. Gao, Y.-T. Di, C.-X. Chen, Y. Lü, L. Zhang, Q.-T. Zheng, X.-J. Hao, *Helv. Chim. Acta* 2007, 90, 1386.
- [4] Z. Shen, Z. Chen, L. Li, W. Lei, X. Hao, Planta Med. 2000, 66, 287.
- [5] L. Li, Y.-M. Shen, X.-S. Yang, G.-Y. Zuo, Z.-J. Shen, Z.-H. Chen, X.-J. Hao, Eur. J. Pharmacol. 2002, 449, 23.
- [6] L. Li, J. Nie, Z. Shen, W. Wu, Z. Chen, X. Hao, Planta Med. 2001, 67, 142.
- [7] L. Li, Y.-M. Shen, X.-S. Yang, W.-L. Wu, B.-G. Wang, Z.-H. Chen, X.-J. Hao, Brain Res. 2002, 944, 205.
- [8] B.-G. Wang, L. Li, X.-S. Yang, Z.-H. Chen, X.-J. Hao, Heterocycles 2000, 53, 1343.

- [9] Y. M. Shen, H. P. He, Y. S. Zhang, B. G. Wang, X. J. Hao, Chin. Chem. Lett. 2000, 11, 789.
- [10] H.-P. He, Y.-M. Shen, J.-X. Zhang, G.-Y. Zuo, X.-J. Hao, *J. Nat. Prod.* 2001, 64, 379.
 [11] G.-Y. Zuo, H.-P. He, X. Hong, W.-M. Zhu, X.-S. Yang, X.-J. Hao, *Heterocycles* 2001, 53, 487.

Received December 11, 2008