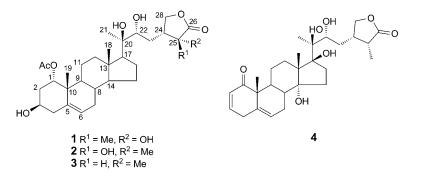
## Two New Withanolides from *Physalis peruviana*

by Sheng-Tao Fang<sup>a</sup>)<sup>b</sup>), Bo Li\*<sup>a</sup>), and Ji-Kai Liu<sup>a</sup>)

 <sup>a</sup>) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, P. R. China (phone: +86-871-5223321; e-mail: libo@mail.kib.ac.cn)
 <sup>b</sup>) Graduate School of the Chinese Academy of Sciences, Beijing 100039, P. R. China


Two new perulactone-type withanolides, named perulactone C (1) and perulactone D (2), together with four known compounds, perulactone (3), perulactone B (4), blumenol A, and (+)-(*S*)-dehydrovomifoliol, were isolated from the aerial parts of *Physalis peruviana*. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR experiments, including HMBC, HSQC, <sup>1</sup>H,<sup>1</sup>H-COSY, and ROESY, as well as HR-MS.

**Introduction.** – The genus *Physalis* (family Solanaceae) includes about 120 species, and most of them growing in South and North America. A small number of species has distributed in Europe and in the countries of southeastern and central Asia. Five species of *Physalis* are found in China [1]. *Physalis peruviana* is a common plant in China, called cape gooseberry (Chinese name: deng-long-guo) as an edible fruit. It is also a medicinal plant widely used in folk medicine for treating diseases such as malaria, asthma, hepatitis, diuretic diseases, and rheumatism [2][3].

The withanolides are steroidal lactones with an ergostane skeleton containing 28 Catoms. Most withanolide compounds are produced by Solanaceae plants, in particular by the genera *Physalis*, *Withania*, *Datura*, *Nicandra*, *Dunalia*, *Lycium*, *Tubocapsicum*, and *Jaborosa* [4]. Such compounds often have antimicrobial, antitumor, antiinflammatory, hepatoprotective, immunomodulatory, and insect-repellent properties [4]. Due to our interest in the biological properties of these compounds, we investigated withanolides from *Physalis peruviana*. In this paper, we report the isolation and structure elucidation of two new perulactones, perulactone C (1) and perulactone D (2) from the aerial parts of *Physalis peruviana*, along with two known withanolides, perulactone (3) and perulactone B (4), and two known *nor*-isoprenoids, blumenol A, and (+)-(S)-dehydrovomifoliol. In previous investigations, only two known perulactone-type withanolides have been isolated from *Physalis peruviana* [5][6].

**Results and Discussion.** – Compound 1, named perulactone C, was obtained as a white amorphous solid. The FAB-MS (positive-ion mode) showed the *quasi*-molecular ion peak  $[M+1]^+$  at m/z 535. Its molecular formula was established as  $C_{30}H_{46}O_8$  by HR-ESI-MS (m/z 557.3099 ( $[M+Na]^+$ ; calc. 557.3090)), indicating eight degrees of unsaturation. The IR spectrum showed strong absorption bands at 3438 and 1769 cm<sup>-1</sup>, indicating the presence of OH groups and of a  $\gamma$ -lactone moiety, respectively.

© 2009 Verlag Helvetica Chimica Acta AG, Zürich



The <sup>1</sup>H-NMR spectrum of **1** (*Table*) displayed five Me *singlets* at  $\delta$ (H) 1.08, 1.15, 1.49, 1.73, and 2.14 (Me(19), Me(18), Me(21), Me(27), and Me(AcO)), one olefinic Hatom doublet at  $\delta(H)$  5.58 (H–C(6)) and two double doublets at  $\delta(H)$  4.77 (dd, J=9.0, 9.0) and 4.59 (dd, J = 9.0, 9.0) (CH<sub>2</sub>(28), ABX-type pattern). The <sup>13</sup>C-NMR data indicated the presence of seven quaternary C-atoms, nine CH, nine CH<sub>2</sub>, and five Me groups. Comparison of the NMR data of 1 with those of 3 indicated that 1 is also a perulactone-type withanolide, and that they possess a similar structure except for the presence of an OH group at C(25) in **1**. This assignment was supported by the 1D- and 2D-NMR spectra as shown in Fig. 1. In the <sup>1</sup>H-NMR spectrum, the signal for Me(27) (1.24 (d, J=7.5)) in **3** was replaced by a *singlet*  $\delta(H)$  1.73 (s) in **1**, and this was also confirmed by HMBC correlations from Me(27) to C(24), C(25), and C(26), from CH<sub>2</sub>(28) to C(23), C(24), C(25), and C(26), and the downfield shift of C(24) and C(25)  $(\delta(C) + 7.4 \text{ and } 34.6 \text{ ppm}, \text{ resp.})$ . Additional key HMBCs were observed between Me(18) and C(12), C(13), and C(14), between Me(19) and C(1), C(5), C(9), and C(10), between Me(21) and C(17) and C(20), between H-C(22) and C(20), C(21), C(23), and C(24), and between H-C(1) and the AcO CO group. All these correlations firmly established the linkage of the above partial structural units (Fig. 1).

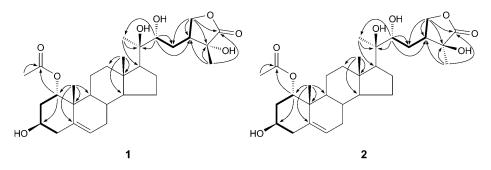



Fig. 1. Key <sup>1</sup>H,<sup>1</sup>H-COSY (—) and HMBC ( $\rightarrow$ ) correlations for 1 and 2

The comparison of the H-atom coupling constants and other spectral data of 1 with those of 3 established the same relative configuration of compound 1 as that in 3 apart from the configuration at C(25). This was also confirmed by the ROESY spectrum

|                              | <b>1</b> <sup>a</sup> )                   |                      | <b>2</b> <sup>b</sup> )                   |                   |
|------------------------------|-------------------------------------------|----------------------|-------------------------------------------|-------------------|
|                              | $\delta(\mathrm{H})$                      | $\delta(C)$          | $\delta(\mathrm{H})$                      | $\delta(C)$       |
| H-C(1)                       | 5.34 (s)                                  | 75.9 (d)             | 5.34 (s)                                  | 75.7 (d)          |
| CH <sub>2</sub> (2)          | $2.05 (m, H_a),$                          | 36.5(t)              | $2.06 (m, H_a),$                          | 36.5(t)           |
|                              | 2.49 (br. $d, J = 14.0, H_{\beta}$ )      |                      | 2.49 (br. $d, J = 13.6, H_{\beta}$ )      |                   |
| H-C(3)                       | 4.31 - 4.38(m)                            | 65.9(d)              | 4.33 - 4.38(m)                            | 65.9 (d)          |
| $CH_2(4)$                    | 2.71 - 2.76(m)                            | 42.7(t)              | 2.72 - 2.78(m)                            | 42.8 (t)          |
| C(5)                         |                                           | 138.7 (s)            |                                           | 138.6 (s)         |
| H-C(6)                       | 5.58 (d, J = 5.5)                         | 123.8(d)             | 5.58 (d, J = 4.8)                         | 123.9(d)          |
| CH <sub>2</sub> (7)          | 1.56 - 1.61 (m),                          | 31.9(t)              | 1.59 - 1.66 (m),                          | 31.9(t)           |
|                              | 1.88 - 1.95 (m)                           |                      | 1.89 - 1.95(m)                            | ( )               |
| H-C(8)                       | 1.47 - 1.55 (m)                           | 31.5(d)              | 1.46 - 1.53 (m)                           | 31.5(d)           |
| H-C(9)                       | 1.47 - 1.54 (m)                           | 42.5(d)              | 1.49 - 1.56 (m)                           | 42.5(d)           |
| C(10)                        |                                           | 40.9(s)              |                                           | 40.9(s)           |
| $CH_2(11)$                   | 1.47 - 1.53 (m)                           | 20.8(t)              | 1.49 - 1.54 (m)                           | 20.8(t)           |
| $CH_2(12)$                   | 1.12 - 1.18 (m),                          | 40.6(t)              | 1.17 - 1.23 (m),                          | 40.6(t)           |
|                              | 2.06-2.14(m)                              |                      | 2.11 - 2.17 (m)                           | 1010 (1)          |
| C(13)                        | 2100 211 (11)                             | 43.6(s)              | 2011 2017 (00)                            | 43.5 (s)          |
| H - C(14)                    | 0.84 - 0.93 (m)                           | 56.8 ( <i>d</i> )    | 0.79 - 0.86(m)                            | 56.6 ( <i>d</i> ) |
| $CH_2(15)$                   | 1.17 - 1.24 (m),                          | 24.5(t)              | 1.13 - 1.20 (m),                          | 24.5(t)           |
|                              | 1.55 - 1.61 (m)                           | 2110 (1)             | 1.49 - 1.55 (m)                           | 2.110 (1)         |
| CH <sub>2</sub> (16)         | 1.82 - 1.88 (m),                          | 22.5(t)              | 1.65 - 1.73 (m),                          | 22.5(t)           |
|                              | 2.30-2.38(m)                              | 22.3 (1)             | 2.25-2.31 (m)                             | 22.5 (1)          |
| H-C(17)                      | 1.66 - 1.72 (m)                           | 55.6(d)              | 1.61 - 1.68 (m)                           | 55.5 (d)          |
| Me(18)                       | $1.00^{-1.12}$ (m)<br>1.15 (s)            | 14.0(q)              | 1.01 (s)                                  | 13.9(q)           |
| Me(19)                       | 1.08(s)                                   | 19.7 (q)             | 1.07(s)                                   | 19.7 (q)          |
| C(20)                        | 1.00 (3)                                  | 76.8(s)              | 1.07 (3)                                  | 76.5(s)           |
| Me(21)                       | 1.49 (s)                                  | 20.8(q)              | 1.51 (s)                                  | 21.0 (q)          |
| H-C(22)                      | 4.01 (br. $d, J = 10.5$ )                 | 75.7(d)              | 3.96 (d, J = 10.4)                        | 76.4(d)           |
| $H^{-}C(22)$<br>$CH_{2}(23)$ | $1.87 - 1.92 (m, H_a),$                   | 28.8(t)              | $1.65 - 1.73 (m, H_a),$                   | 29.4(t)           |
| $CH_2(23)$                   | $2.32 - 2.37 (m, H_{\beta})$              | 28.8 (1)             | $2.23 - 2.29 (m, H_{\beta})$              | 29.4 ( <i>l</i> ) |
| H-C(24)                      | 2.63-2.69 (m)                             | 46.3 ( <i>d</i> )    | 3.05 - 3.12 (m)                           | 47.5 (d)          |
| C(25)                        | 2.03 - 2.09 (m)                           | 72.9(s)              | 5.05 - 5.12 (m)                           | 74.4(s)           |
| C(23)<br>C(26)               |                                           | 172.9(s)<br>179.7(s) |                                           | 181.1(s)          |
| · /                          | 1.73(s)                                   |                      | 1.60(s)                                   | · · ·             |
| Me(27)                       |                                           | 23.2(q)              |                                           | 19.2 (q)          |
| CH <sub>2</sub> (28)         | $4.59 (dd, J = 9.0, 9.0, H_a),$           | 72.5 <i>(t)</i>      | $4.28 (dd, J = 10.0, 6.8, H_a),$          | 71.4 <i>(t)</i>   |
|                              | 4.77 ( $dd$ , $J = 9.0, 9.0, H_{\beta}$ ) | 170.2 ( )            | 4.91 ( $dd$ , $J = 9.2, 8.0, H_{\beta}$ ) | 170.2 ( )         |
| AcO                          | 2.14 (s)                                  | 170.3(s),            | 2.12 (s)                                  | 170.3(s)          |
|                              |                                           | 21.1(q)              |                                           | 21.1(q)           |

Table. <sup>1</sup>H- and <sup>13</sup>C-NMR Data of 1 and 2.  $\delta$  in ppm, in C<sub>5</sub>D<sub>5</sub>N, J in Hz

(*Fig. 2*). In the ROESY spectrum of **1**, correlations between H–C(24) and H–C(22),  $H_{\beta}$ –C(28), as well as Me(27) indicated that the OH group at C(25) has  $\alpha$ -orientation, and the configuration at C(25) is (*R*\*). From these data, the structure of **1** was finally identified as  $(1\alpha,3\beta,20R^*,22R^*,24R^*,25R^*)$ -3,20,22,25-tetrahydroxy-26-oxo-26,28-epoxyergost-5-en-1-yl acetate.

Compound **2**, named perulactone D, was obtained as a white amorphous solid. It was assigned the same molecular formula  $C_{30}H_{46}O_8$  as **1** by HR-ESI-MS (*m*/*z* 557.3091

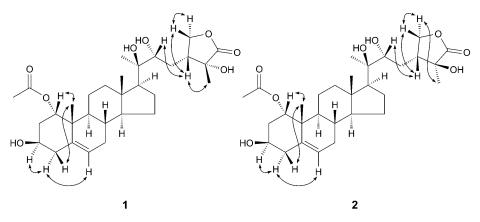



Fig. 2. Key ROESY (A) correlations for 1 and 2

 $([M + Na]^+; calc. 557.3090))$ . The IR spectrum showed strong absorption bands at 3441 and 1774 cm<sup>-1</sup>, indicating the presence of OH groups and of a  $\gamma$ -lactone moiety, respectively.

The <sup>1</sup>H- and <sup>13</sup>C-NMR spectra (*Table*) were very similar to those of **1**. The only difference between **2** and **1** was the configuration at C(25), which was confirmed by a ROESY experiment (*Fig. 2*). For **2**, a ROESY correlation of  $H_a$ -C(28) with Me(27) was observed, instead of the correlation of H-C(24) with Me(27) in **1**, suggesting that the OH group attached to C(25) has  $\beta$ -orientation and the configuration at C(25) is (*S*\*) in **2**. Consequently, perulactone D (**2**) was identified as the 25-epimer of perulactone C (**1**), and the structure of **2** was elucidated as (1 $\alpha$ ,3 $\beta$ ,20*R*\*,22*R*\*, 24*R*\*,25*S*\*)-3,20,22,25-tetrahydroxy-26-oxo-26,28-epoxyergost-5-en-1-yl acetate.

The structures of the four known compounds were determined as perulactone (3) [5], perulactone B (4) [6], blumenol A [7], and (+)-(S)-dehydrovomifoliol [8] by comparison of their spectroscopic data with those reported in the literature. Blumenol A and (+)-(S)-dehydrovomifoliol were isolated from *P. peruviana* for the first time.

We are grateful to the Analytical Group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for the measurements of the spectra.

## **Experimental Part**

General. Column chromatography (CC): silica gel (SiO<sub>2</sub>; 200–300 mesh; Qingdao Marine Chemical Co., Ltd). TLC: silica-gel G plates; visualization by spraying with 10% H<sub>2</sub>SO<sub>4</sub> in EtOH, followed by heating. Optical rotation: Horiba-SEAP-300 spectropolarimeter. UV Spectra: Shimadzu UV-2401PC spectrophotometer;  $\lambda_{max}$  (log  $\varepsilon$ ) in nm. IR Spectra: Bio-Rad FTS-135 spectrometer, KBr pellets;  $\nu_{max}$  in cm<sup>-1</sup>. 1D- and 2D-NMR Spectra: Bruker AM-400 and DRX-500 instruments; at 400/100 and 500/ 125 MHz, resp.;  $\delta$  in ppm, J in Hz. FAB-MS: VG AutoSpec-3000. HR-ESI-MS: API Qstar-Pulsar LC/ TOF mass spectrometers; in m/z.

*Plant Material.* The aerial parts of *P. peruviana* was collected in Kunming, Yunnan, P. R. China, in September 2005. A voucher specimen was deposited in the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences.

*Extraction and Isolation.* The air-dried aerial parts (6.0 kg) of *P. peruviana* were extracted with MeOH at r.t. ( $4 \times 40$  l). The extracts were combined and concentrated, and the residue was suspended in H<sub>2</sub>O, and then successively partitioned with petroleum ether (PE), CHCl<sub>3</sub>, and BuOH, resp. The CHCl<sub>3</sub>-soluble extract (33 g) was subjected to CC (SiO<sub>2</sub>; CHCl<sub>3</sub>/MeOH 100:0  $\rightarrow$  80:20) to afford 11 fractions: *Fr. 1–11.* Compounds **1** (17 mg), **2** (12 mg), and **3** (24 mg) were obtained from *Fr. 8.* Compound **4** (172 mg) was obtained from *Fr. 7.* Blumenol A (13 mg) and (+)-(*S*)-dehydrovomifoliol (10 mg) were obtained from *Fr. 4* after repeated CC.

Perulactone C (=  $(1\alpha, 3\beta, 20R^*, 22R^*, 24R^*, 25R^*)$ -3,20,22,25-Tetrahydroxy-26-oxo-26,28-epoxyergost-5-en-1-yl Acetate; **1**). White amorphous solid. UV (MeOH): 204 (3.58).  $[\alpha]_D^{24.8} = 0.0$  (c = 0.09, MeOH). IR (KBr): 3438, 2968, 2941, 1769, 1734, 1714, 1634. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table. FAB-MS (glycerol; pos.): 627 ( $[M + glyc. + H]^+$ ), 535 ( $[M + H]^+$ ). HR-ESI-MS (pos.): 557.3099 ( $C_{30}H_{46}NaO_8^+$ ,  $[M + Na]^+$ ; calc. 557.3090).

Perulactone  $D (= (1\alpha, 3\beta, 20R^{*}, 22R^{*}, 24R^{*}, 25S^{*}) - 3, 20, 22, 25$ - Tetrahydroxy-26-oxo-26, 28-epoxyergost-5-en-1-yl Acetate; **2**). White amorphous solid. UV (MeOH): 203 (3.45).  $[\alpha]_{D}^{25.3} = 0.0 (c = 0.12, MeOH)$ . IR(KBr): 3441, 2948, 2939, 1774, 1735, 1713, 1631. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table. FAB-MS (glycerol; pos.): 720 ( $[M + 2 \text{ glyc.}]^+$ ), 628 ( $[M + \text{glyc.} + 2 \text{ H}]^+$ ), 535 ( $[M + \text{H}]^+$ ). HR-ESI-MS (pos.): 557.3091 ( $C_{30}H_{46}NaO_8^{*}, [M + Na]^+$ ); calc. 557.3090).

## REFERENCES

- [1] Yunnan Institute of Botany, 'Flora Yunnanica, Tomus 2', Science Press, Beijing, 1979, p. 555.
- [2] R. C. Pietro, S. Kashima, D. N. Sato, A. H. Januário, S. C. França, Phytomedicine 2000, 7, 335.
- [3] M. B. P. Soares, M. C. Bellintani, I. M. Ribeiro, T. C. B. Tomassini, R. R. dos Santos, Eur. J. Pharmacol. 2003, 459, 107.
- [4] E. Glotter, Nat. Prod. Rep. 1991, 8, 415.

400.

- [5] H. E. Gottlieb, I. Kirson, E. Glotter, A. B. Ray, M. Sahai, A. Ali, J. Chem. Soc., Perkin Trans. 1 1980, 2700.
- [6] M. Sahai, H. E. Gottlieb, A. B. Ray, A. Ali, E. Glotter, I. Kirson, J. Chem. Res., Synopses 1982, 346.
  [7] A. G. González, J. A. Guillermo, A. G. Ravelo, I. A. Jimenez, M. P. Gupta, J. Nat. Prod. 1994, 57,
- [8] W. Kisiel, K. Michalska, E. Szneler, Biochem. Syst. Ecol. 2004, 32, 343.

Received January 6, 2009