

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 2373-2377

Two novel tricyclic diterpenoids from *Isodon rubescens* var. *taihangensis*

Quan-Bin Han,^a Ji-Xia Zhang,^b Ai-Hua Zhao,^a Han-Dong Sun,^{a,*} Yang Lu,^c Yun-Shan Wu^c and Qi-Tai Zheng^c

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China

^bDepartment of Chemistry, Xinxiang Medical College, Xinxiang 453000, People's Republic of China

^cInstitute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, People's Republic of China

Received 6 August 2003; revised 27 October 2003; accepted 6 January 2004

Abstract—Two novel tricyclic diterpenoids rubescensins U (1) and V (2) were isolated from the leaves of *Isodon rubescens* var. *taihangensis*. They were elucidated as a 8,15-*seco-ent*-kauranoid and an *ent*-abietanoid, respectively, by 1D and 2D NMR spectra, and single crystal X-ray analysis. Compound 1 is the first example of an 8,15-*seco-ent*-kaurane from the plants genus *Isodon*. A discussion of their biogenesis is described.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

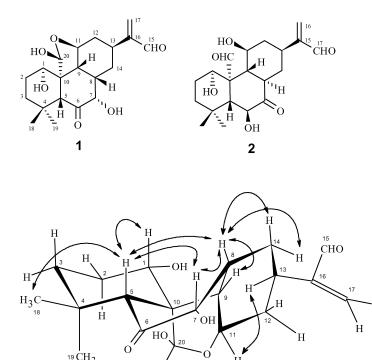
In recent years, a series of tricyclic diterpenoids were reported from the genus Isodon, which was well-known to be abundant in tetracyclic ent-kaurane diterpenoids.¹ Among them, adenanthin L (3) from I. adenantha,² laxiflorin O (4) from I. eriocalyx var. laxioflora,³ and eriocaside A (5) from I. eriocalyx,⁴ were elucidated as entabietanoids; Melissoidesin L (6) from *I. Melissoides*,⁵ was an abietanoid, and taibaihenryiin C (7) from I. henryi was even regarded as having a novel skeleton,⁶ on the basis of their tricyclic skeleton. In our continuing research for more bioactive substances from the Isodon plants, two tricyclic diterpenoids (1 and 2) were isolated from Isodon rubescens var. *taihangensis* Z. Y. Gao and Y. R. Li,⁷ a famous folk herbal medicine for treatment of cancers.⁸ Compounds 1 and 2 were determined as a 8,15-seco-ent-kauranoid and an ent-abietanoid by the key H-8 β of 1 and H-8 α of 2, respectively. From the similarity in the structures of compounds 1 and 2, a brief discussion of their biogenesis is described.

2. Results and discussion

Compound 1 was obtained as colorless, prismatic crystals

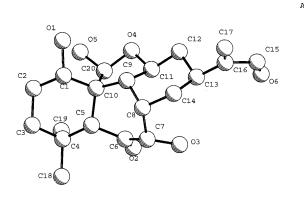
with a molecular formula $C_{20}H_{28}O_6$ determined by the HREIMS. The 20 carbon atoms found in the ¹³C and DEPT NMR spectra of 1 consisted of a ketonic carbon, an aldehydic carbon, an olefinic quaternary carbon, an olefinic methylene carbon, a hemiacetal carbon, seven methine carbons including three oxygenated ones, four methylene carbons, two quaternary carbons, and two methyl carbons, which obviously suggested a diterpene skeleton. Compound 1 was further deduced to be a tricyclic diterpenoid by the absence of a quaternary carbon found in other typical entkauranoids also isolated from the same plant, such as lasiodonin (8),⁹ and the presence of H-8 clearly exhibiting HMBC correlations with C-10, C-11, and C-13 (Table 1). Because H-8 has been determined to be of a β orientation by the ROESY correlations of H-8/H-5ß and H-8/H-9ß, and considering the structures of diterpenoids isolated from this plant, compound 1 was deduced to be a 8,15-seco-entkauranoid, instead of an ent-abietanoid.

The remaining oxygenated functionalities of **1** were established accordingly. OH-1 α and OH-7 α were deduced by the HMBC correlations of H-1/C-5 and C-9, H-7/C-5 and C-9 (Table 1), and the ROESY correlations of H-1 β /H-5 β and H-7 β /H-8 β (Fig. 1). The ketonic carbon was assigned as C-6 by the long-range correlations of H-5 and H-7 with C-6 in the HMBC spectrum. Based on the analysis of the relational HMBC correlations of **1** (Table 1), the olefinic bond conjugated with the aldehydic group was located at C-13. The 11,20-epoxy group was also deduced in the same way. Consequently, with the aid of the NOEs of H-11 α /H-13 α and H-20/Me-19 in the ROESY spectrum, compound **1**


Keywords: Labiatae; Isodon rubescens var. taihangensis; 8,15-seco-ent-Kauranoid; ent-Abietanoid; Rubescensin U; Rubescensin V.

^{*} Corresponding author. Tel.: +86-871-522-3251; fax: +86-871-521-6343; e-mail address: hdsun@mail.kib.ac.cn

No.	1			2		
	$^{1}\mathrm{H}$	¹³ C	HMBC ^b	¹ H	¹³ C	HMBC ^b
1	3.92-3.95 m	76.9 d	9, 20	4.22–4.27 m	74.7 d	2, 3, 5, 9, 20
1-OH	6.15 d, 8.0		1, 10	7.95 s		
2	2.80–2.84 m 2.00–2.06 m	29.8 t	4, 10	2.10–2.15 m 2.03–2.08 m	28.9 t	1, 3, 4, 10
3	1.51 overlap 1.38 dt, 4.0, 13.2	41.4 t	1, 4, 5, 18, 19	1.60–1.65 m 1.39–1.45 m	39.7 t	1, 2, 4, 5
4		32.7 s			34.9 s	
5	2.49 s	57.8 d	6, 7, 9, 18, 19, 20	1.66 d, 10.0	57.5 d	6, 7, 9, 10, 18, 19
6 6-OH		214.8 s		4.67 d, 10.0 8.02 s	75.2 d	4, 5, 7
7	4.52 d, 8.0	77.7 d	5, 6, 8, 9		210.8 s	
7-OH	6.88 s		6, 8			
8	3.08-3.11 m	37.2 s	10, 11, 13	3.37 dt, 2.2, 12.0	47.5 d	7, 9, 11, 14
9	2.68 dd, 3.6, 11.0	52.6 d	1, 5, 7, 8, 12	1.71 br t, 12.0	59.9 d	5, 8, 10, 11, 20
10		54.4 s			58.7 s	
11	3.66 dt, 3.0, 11.0	72.5 d	8, 10, 20	4.40–1.45 m	70.3 d	8, 9, 12
11-OH		24.5		5.79 br s	11.0	
12	2.32 overlap 1.58–1.63 m	36.7 t	9, 13, 14, 16	2.36–2.41 m 1.51–1.55 m	41.9 t	9, 11, 13, 14, 16
13	3.81–3.85 m	33.4 d	8, 11, 14, 15, 17	2.72 br t, 12.5	32.8 d	16
14	2.28 overlap	31.9 t	8, 9, 13, 16	2.25 dd, 2.2, 13.2	31.8 t	7, 8, 9, 12, 16
	1.41–1.46 m		.,,,,	1.45–1.49 m		., ., , ,,
15	9.53 s	194.5 d	13, 17		153.6 s	
16		154.8 s		6.19, 5.89 (each 1H, s)	133.4 t	13, 15, 17
17	6.12, 5.84 (each 1H, s) s	133.6 t	13, 15	9.55 s	194.4 d	13, 16
18	1.01 s (3H)	30.3 q	3, 4, 5, 19	1.40 s (3H)	34.0 q	3, 4, 5, 19
19	1.67 s (3H)	21.0 g	3, 4, 5, 18	1.27 s (3H)	23.1 q	3, 4, 5, 18
20	5.73 d, 8.0	103.2 d	1, 5, 9, 11	10.73 s	207.9 [°] d	10
20-OH	8.47 d, 8.0		10, 20			


Table 1. NMR spectral data and HMBC correlations for 1 and $2^{\rm a}$

 $^{\rm a}$ $^{\rm 1}{\rm H}$ NMR, 400 MHz; $^{\rm 13}{\rm C}$ NMR, 100 MHz, pyridine- d_5 ; data in ppm (J in Hz). $^{\rm b}$ From H to C.

Η

19 ĊH3

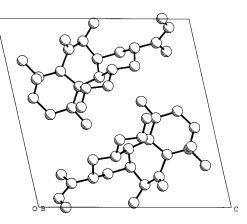


Figure 2. Crystal structure of 1.

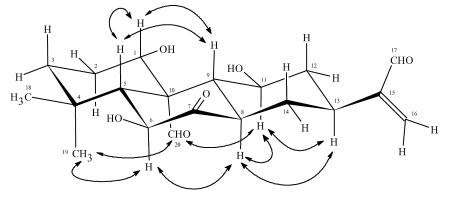


Figure 3. Selected ROESY correlations for 2.

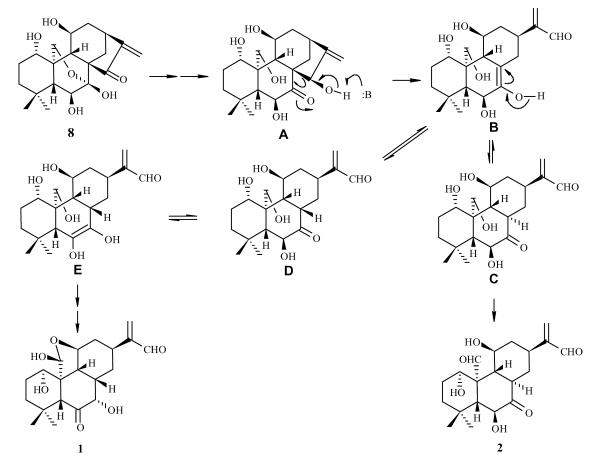


Figure 4. A plausible biogenetic pathway to account for the formation of compounds 1 and 2.

was elucidated as $20(S)-1\alpha,7\alpha,20$ -trihydroxy-6,15-dioxo-11 $\beta,20$ -epoxy-8,15-*seco-ent*-kaur-16(17)-ene, named rubescensin U (1). Finally, the X-ray crystallographic analysis of 1 (Fig. 2) confirmed stereochemically that rings A and C were in chair forms, and ring B showed a twist boat conformation. This 8,15-*seco-ent*-kaurene skeleton was proved and reported from the genus *Isodon* plants for the first time.¹⁰

Similarly, compound **2** was also educed to be a tricyclic diterpenoid. A comparison of the ¹H and ¹³C NMR data of compounds **2** and **1** suggested that **2** was derived from the hydrolysis of the hemiacetal group at C-20 of **1**. Further analysis of the ROESY spectrum of **2** revealed a key difference between **2** and **1**, in that the H-8 of **2** showed NOEs with H-13 α and H-11 α (Fig. 3) instead of correlating with H-5 β and H-9 β , indicating the α -orientation of H-8. This presence of H-8 α was confirmed by the coupling constant (*J*=12.0 Hz) between H-8 and H-9 β , and indicated that **2** is an *ent*-abietanoid. Accordingly, by the ROESY correlation of H-6 α /Me-19, compound **2** was established as $1\alpha, 6\beta, 11\beta$ -trihydroxy-7,17,20-trioxo-*ent*-abiata-15(16)-ene, and named rubescensin V.

The biogenesis from lasiodonin 8, one of the major *ent*-kauranoids of this plant, to compounds 1 and 2 was postulated (Fig. 4) to explain their origins. In the proposed biogenetic pathway, a retroaldol reaction from A to B resulted in the key transformation that converted a tetracyclic *ent*-kaurane to a tricylic diterpenoid.^{11,12} The keto-end equilibration of B gave C and D, and determined the key stereochemical difference between 1 and 2. The subsequent enolization from D to E, oxidation and hemiacetalization yielded 1. Compound 2 was derived from the oxidation of C. Thus, the *ent*-abietanoid 2 could have originated from an *ent*-kaurane.

3. Experimental

3.1. General procedures

Melting points were measured on an XRC-1 micro melting point apparatus and were uncorrected. Optical rotations were measured on a JASCO DIP-370 digital polarimeter. IR spectra were obtained on a Bio-Rad FtS-135 spectrophotometer with KBr pellets. MS were recorded on a VG Auto Spec-3000 spectrometer. 1D- and 2D NMR spectra were obtained on the Bruker AM-400 and DRX-500 instruments with TMS as an internal standard.

3.2. Plant material

The leaves of *Isodon rubescens* var. *taihangensis* were collected from Hebi Prefecture, Henan Province, in August 2000, and identified by Professor Z. W. Lin, Kunming Institute of Botany. A voucher specimen has been deposited in the Herbarium of the Kunming Institute of Botany, Chinese Academy of Sciences.

3.3. Extraction and isolation

The 70% Me₂CO extracts of the air-dried and powdered

leaves of *I. rubescens* var. *taihangensis* (10 kg) were partitioned with EtOAc to afford the EtOAc extract (400 g), which was subjected to silica gel column chromatography using CHCl₃, CHCl₃–Me₂CO (9:1, 8:2, 7:3, 6:4) and Me₂CO as eluents. Compounds **1** and **2** (14 and 6 mg) were obtained from the CHCl₃–Me₂CO (7:3) fraction after repeated silica gel column chromatographic separations, followed by preparative TLC and recrystallization from MeOH.

3.3.1. Compound 1. Colorless prismatic crystals. Mp 202–204 °C; $[\alpha]_D^{21.6}$ =-60.0 (*c*=0.1, acetone); IR (KBr) ν_{max} : 3433, 2928, 1716, 1683, 1683, 1124 cm⁻¹. ¹H NMR (C₅D₅N, 400 MHz) and ¹³C NMR (C₅D₅N, 100 MHz): see Table 1; EI-MS (70 eV) *m/z* (%): 364 (M⁺, 3), 346 (20), 328 (8), 318 (40), 300 (15); HREIMS *m/z*: [M]⁺ 364.1897 (calcd for C₂₀H₂₈O₆ 364.1886).

Crystal data for 1. Crystals of 1, crystallized from methanol, belong to the monoclinic space group $P2_1$. Crystal data: $C_{20}H_{28}O_6 H_2O, M=364.43, a=12.368(2), b=6.275(1),$ c=12.289(2) Å, $\beta=102.76(1)^\circ$, V=930.2(3) Å³, Z=2, d=1.301 g/cm⁻³, Mo K α radiation, linear absorption coefficient $\mu = 1.0 \text{ cm}^{-1}$. A colorless quadrate lumpish crystal of dimensions 0.02×0.15×0.60 mm³ was used for X-ray measurements on a MAC DIP-2030 diffractometer with a graphite monochromator, maximum 2θ value of 50.0° was set. The total number of independent reflections measured was 1530, 1431 of which were considered to be observed $(|F|^2 \ge 8\sigma |F|^2)$. The structure was solved by the direct method SHELX-86 and expanded using difference Fourier techniques, refined by the program and method NOMCSDP¹³ and full-matrix least-squares calculations. Hydrogen atoms were fixed at calculated positions. The final indices were $R_f = 0.071$, $R_w = 0.070$ (w=1/ $\sigma |F|^2$).

3.3.2. Compound **2.** White amorphous powder; $[\alpha]_D^{21.4} = -5.0$ (c=0.2, acetone); IR (KBr) ν_{max} : 3441, 2928, 1705, 1683, 1084 cm⁻¹. ¹H NMR (C₅D₅N, 400 MHz) and ¹³C NMR (C₅D₅N, 100 MHz): see Table 1; (+) FAB-MS m/z: 365 ([M+1]⁺); (+) HRFABMS m/z: [M+H]⁺ 365.1987 (calcd for C₂₀H₂₉O₆ 364.1964).

References and notes

- 1. Sun, H. D.; Xu, Y. L.; Jiang, B. Diterpenoids from Isodon species; Sciences: Beijing, 2001; pp 4-6.
- Jiang, B.; Yang, H.; Li, M. L.; Hou, A. J.; Han, Q. B.; Wang, S. J.; Li, S. H.; Sun, H. D. J. Nat. Prod. 2002, 65, 1111–1116.
- Niu, X. M.; Li, S. H.; Zhao, Q. S.; Mei, S. X.; Lin, Z. W.; Sun, H. D.; Lu, Y.; Wang, C.; Zheng, Q. T. *Helv. Chim. Acta* 2003, 86, 299–306.
- 4. Shen, X. Y.; Isogai, A.; Sun, H. D.; Suzuki, A. *Phytochemistry* **1993**, *34*, 1595–1598.
- Zhao, A. H.; Han, Q. B.; Li, S. H.; Wang, F. S.; Zhao, Q. S.; Sun, H. D. Chem. Pharm. Bull. 2003, 51, 845–847.
- Li, B. L.; Pan, Y. J.; Yu, K. B. Tetrahedron Lett. 2002, 43, 3845–3847.
- 7. Gao, Z. Y.; Li, Y. R. Acta Phytotaxonomica Sin. 1986, 24, 15–16.
- 8. Yin, J.; Guo, L. G. The modern study and clinical application

of traditional medicines; Xueyuan: Beijing, 1994; Vol. 1. pp 223–227.

- 9. Takeda, Y.; Fujita, T.; Chen, C. C. Chem. Lett. 1982, 833-836.
- Ybarra, M. I.; Borkosky, S. A.; Catalán, C. A. N.; Cerda-García-Rojas, C. M.; Joseph-Nathan, P. *Phytochemistry* 1997, 44, 479–483.
- 11. Fujita, E.; Fujita, T.; Shibuya, M. *Tetrahedron* **1969**, *25*, 2517–2530.
- 12. Fujita, E.; Fujita, T.; Katayama, H.; Nagao, Y. *Tetrahedron* **1969**, *25*, 1335–1348.
- 13. Lu, Y.; Wu, B. M. Chin. Chem. Lett. 1992, 3, 637-640.