

Fitoterapia 71 (2000) 417-419

FITOTERAPIA

www.elsevier.com/locate/fitote

A new *ent*-kaurane diterpenoid from *Isodon phyllostachys*

Ai-Jun Hou, Hui Yang, Bei Jiang, Qin-Shi Zhao, Zhong-Wen Lin, Han-Dong Sun*

Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204, Yunnan, PR China

Received 22 December 1999; accepted 26 January 2000

Abstract

A new *ent*-kaurane diterpenoid, phyllostachysin C (1), together with five known compounds, sculponeatins B and C, nodosin, ursolic acid and 2α -hydroxyursolic acid, were isolated from the leaves of *Isodon phyllostachys*. The structure of 1 was elucidated on the basis of its spectral properties. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Isodon phyllostachys; ent-Kauranoids; Phyllostachysin C

1. Introduction

Isodon phyllostachys (Diels) Hara (Lamiaceae), distributed widely in the northwest of Yunnan and south-west of Sichuan of China, has been used as antiphlogistic or an antibiotic agent in folk medicine. We reported previously two new *ent*-kauranoids, phyllostachysin A [1] and B [2], and further examination of the diterpenoids in this plant collected in Sichuan province led to the isolation of a new compound, phyllostachysin C (1), and five known isolates, sculponeatins B and C [3], nodosin [4], ursolic acid and 2α -hydroxyursolic acid. We now present the isolation and characterization of 1.

^{*} Corresponding author. Tel.: +86-871-5150660; fax: +86-871-5216343.

E-mail address: hdsun@mail.kib.ac.cn (H. Sun).

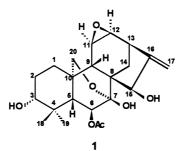
⁰³⁶⁷⁻³²⁶X/00/\$ - see front matter © 2000 Published by Elsevier Science B.V. All rights reserved. PII: S 0 3 6 7 - 3 2 6 X (0 0) 0 0 1 4 8 - 9

2. Experimental

2.1. Plant material

The leaves of *I. phyllostachys* were collected in Muli of Sichuan province in August 1987, and air-dried. The identity of plant material was verified by Prof. Xi-Wen Li, and a voucher specimen (870831-KIB) is deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Academia Sinica.

2.2. Extraction and isolation


The dried and powdered leaves (2.2 kg) were extracted with Et_2O and concentrated. The residue was dissolved in MeOH and decolored by activated charcoal. After the removal of MeOH, the extract (92 g) was subjected to Si-gel CC eluting with petrol-chloroform and chloroform-acetone. Each fraction was further purified by recrystallization to yield 1 (550 mg), sculponeatins B (1.3 g) and C (3.3 g), nodosin (2.5 g), ursolic acid (115 mg) and 2 α -hydroxyursolic acid (50 mg).

Phyllostachysin C (1). $C_{22}H_{30}O_7$, colorless needles, m.p. 203–205°C, $[\alpha]_D^{22}$: -102.0° (c 0.55, C₅H₅N); IRmax (KBr): 3550, 3520, 3330, 1740, 1655, 1225, 1100, 1055, 1038, 1020 cm⁻¹; ¹H-NMR (400 MHz, Py- d_5): 1.63 (1H, m, H-1 α), 1.82 (1H, overlap, H-1 β), 1.86 (2H, m, H₂-2 α and β), 3.50 (1H, br d, J 9.2 Hz, H-3 β), 1.55 $(1H, d, J 4.2 \text{ Hz}, \text{H-5}\beta), 5.76 (1H, d, J 4.2 \text{ Hz}, \text{H-6}\alpha), 2.57 (1H, br s, \text{H-9}\beta), 3.19$ $(1H, t, J 4.3 \text{ Hz}, \text{H-}11\alpha), 3.22 (1H, t, J 4.3 \text{ Hz}, \text{H-}12\alpha), 2.96 (1H, br s, \text{H-}13\alpha), 2.56$ $(1H, d, J 12.1 Hz, H-14\alpha), 2.07 (1H, dd, J 4.6, 12.1 Hz, H-14\beta), 5.01 (1H, br s,$ H-15a), 5.54 (1H, br s, H-17a), 5.25 (1H, br s, H-17b), 1.20 (3H, s, Me-18), 1.30 (3H, s, Me-19), 4.20 (1H, ABd, J 9.2 Hz, H-20a), 4.44 (1H, ABd, J 9.2 Hz, H-20b), 2.19 (3H, s, Me-OAc); ¹³C-NMR (100 MHz, Pv-d₅): 28.4 (C-1), 27.9 (C-2), 77.2 (C-3), 40.1 (C-4), 58.4 (C-5), 74.4 (C-6), 96.4 (C-7), 51.4 (C-8), 41.1 (C-9), 37.5 (C-10), 50.8 (C-11), 53.6 (C-12), 38.3 (C-13), 26.6 (C-14), 74.7 (C-15), 153.4 (C-16), 109.5 (C-17), 27.8 (C-18), 15.9 (C-19), 67.9 (C-20), 169.2 (C- OAc), 21.5 (C- OAc); EI-MS (70 eV) m / z: 406 [M]⁺ (1), 346 [M-AcOH]⁺ (35), 328 [M-AcOH-H₂O]⁺ (8), 318 (3), 300 (4), 282 (10), 167 (100), 149 (67); HREI-MS m / z: 406.1986 (calcd for C₂₂H₃₀O₇, 406.1992).

3. Results and discussion

The ethereal extract from the leaves of *I. phyllostachys* was subjected to Si-gel column chromatography eluting with petrol-chloroform and chloroform-acetone. Each fraction was further purified repeatedly to yield phyllostachysin C (1) and five known compounds.

Phyllostachysin C (1) was obtained as colorless needles and had a molecular formula of $C_{22}H_{30}O_7$ deduced from HREI-MS (obsd 406.1986, calcd 406.1992) and the analysis of its ¹³C-NMR spectrum. It contained an acetoxyl group [¹H-NMR: δ 2.19 (3H, *s*); ¹³C-NMR: δ 169.2 (*s*) and 21.5 (*q*)], *exo*-methylene group [IRmax (KBr): 1655 cm⁻¹; ¹H-NMR: δ 5.25 and 5.54 (each 1H, *br s*); ¹³C-NMR: δ 109.5 (*t*)

and 153.4 (*s*)], an oxygen-bearing methylene [¹H-NMR: δ 4.20 and 4.44 (each 1H, *ABd*, *J* = 9.2 Hz); ¹³C-NMR: δ 67.9 (*t*)], and a ketalic group [¹³C-NMR: δ 96.4 (*s*)]. Moreover, signals due to two tertiary methyl groups, three methylenes, eight methines including five oxygenated ones and three quaternary carbons were also observed in the ¹³C-NMR spectrum of **1**. These facts, with consideration of the structures of diterpenoids isolated so far from the *Isodon* genus [5,6], established the basic skeleton of **1** as 7β-hydroxy-7 α , 20-epoxy-*ent*-kaur-16-ene.

According to the ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY and HMQC experiments, all protons and related carbons were assigned, which provided information on the five oxygenated methines. The signals at δ 3.50 (1H, *br d*, *J* = 9.2 Hz, H-3) and δ 77.2 (*d*, C-3), and the downfield shifts of C-2 and C-4 disclosed that a hydroxyl group was located at C-3. The acetoxyl group was at C-6 through the signals of H-6 (δ 5.76, 1H, *d*, *J* = 4.2 Hz) and C-6 (δ 74.4, *d*). The signals at δ 5.01 (1H, *s*, H-15) and δ 74.7 (*d*, C-15) were indicative of a 15-hydroxyl group. The signals at δ 3.19 (1H, *t*, *J* = 4.3), 3.22 (1H, *t*, *J* = 4.3 Hz), δ 50.8 (*d*) and 53.6 (*d*) were ascribable to H-11, H-12, C-11 and C-12, respectively, which showed the presence of a 11, 12-epoxide ring.

The following NOESY cross peaks: H-3 β with H-1 β and H-5 β ; H-6 α with Me-18, 19; H-15 α with H-14 β , indicated that 3-OH, 6-OAc and 15-OH possessed α -, β - and β -orientation, respectively. The upfield shifts of C-19, 18 and C-9 owing to the γ -steric compression effects of 3 α - and 15 β -OH also supported partial results above. Additionally, the β -configuration of the 11, 12-epoxide ring was decided by the NOE effects of H-11 α with H-14 α and H-1 α , and the peak form of H-12 (t, J = 4.3 Hz). Thus, the structure of phyllostachysin C (1) was identified as shown.

References

- [1] Fujita T, Sun HD, Takeda Y, Hinami T, Lin ZW, Xu YL. J Chem Soc Chem Commun 1985;23:1738.
- [2] Chen YP, Sun LP, Sun HD. Acta Bot Yunnanica 1991;13:331.
- [3] Sun HD, Lin ZW, Xu YL et al. Heterocycles 1986;24:1.
- [4] Fujita E, Fujita T, Shibuya M. Tetrahedron Lett 1966;27:3153.
- [5] Takeda Y, Ikawa A, Matsumoto T, Terao H, Otsuka H. Phytochemistry 1992;31:1687.
- [6] Wu SH, Zhang HJ, Chen YP, Lin ZW, Sun HD. Phytochemistry 1993;34:1099.