Structure of 6-Epiforsticine and Revision of the Stereochemistry of Forsticine

Feng Peng WANG¹*, Zheng Bang LI, Ji Jun CHEN², Jin Song YANG¹

¹Department of Chemistry of Medicinal Natural Products, School of Pharmacy, West China University of Medical Sciences, Chengdu 610041 ²Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: A norditerpenoid alkaloid, 6-epiforsticine, has been isolated from the roots of the plants *Aconitum hemsleyanum* var. *pengzhouense and A. kuzsnezoffii* and its structure has been established as 1 on the basis of 2D-NMR and X-ray diffraction analysis. The structure of forsticine has accordingly been revised from 1 to 2.

Keywords: Norditerpenoids alkaloid, 6-epiforsticine, forsticine.

In the course of our investigation on *Aconitum* and *Delphinium* species, we have isolated a number of norditerpenoid and diterpenoid alkaloids from *A. kuzsnezoffii* and *A. hemsleyanum* var. *pengzhouense*^{1~6}. We have found that a norditerpenoid alkaloid, 6-epiforsticine isolated from both plants shows a great deal of similarity to forsticine⁷ but significantly differed from the latter in its ¹³C NMR spectrum (**Table I**), suggesting that the alkaloids were a pair of epimers at C-6. The present communication deals with elucidation of the structure of 6-epiforsticine as **1** by 2 D-NMR and X-ray diffraction analysis, as well as a revision of the structure of forsticine from **1** to **2**.

6-Epiforsticine⁷ **1** was isolated as colorless needles with mp 114-116 °C (ether-hexane) and $\left[\alpha\right]_{D}^{24}$ +43.0 (c 0.73, CHCl₃)^{5, 8}. Its molecular formula, C₂₄H₃₉NO₆, was established by MS, ¹H (¹³C) NMR spectra. The FABMS of **1** showed distinctive fragment ion peaks at m/z 438 (M+1,100) and 406 (M-31, 10). The NMR spectra of 1 gave signals at $\delta_{\rm H}$ 1.05 (3H, t, J=7.2 Hz), $\delta_{\rm C}$ 49.0 t and 13.4 q for an N-ethyl group, $\delta_{\rm H}$ 3.20, 3.22 and 3.28 (each 3H, s), δ_C 55.9 q, 56.2q and 59.0 q for three methoxyl groups. Its NMR spectra showed the connectivities of the signals at $\delta_{\rm H}$ 4.12 (1H, t, J=4.8 Hz) and 4.80 (1H, s, J=6.8 Hz) with that at δ_C 75.1 d and 71.6 d (HMQC), respectively, and the signal at $\delta_{\rm C}$ 73.7 s, indicating that it had two secondary hydroxyl groups and one tertiary hydroxyl group. The 1H triplet (J=4.8 Hz) signal at $\delta_{\rm H}$ 4.12 ($\delta_{\rm C}$ 75.1 d) was assigned to H-14 β , suggesting the presence of an OH-14 α group. Location of the hydroxyl group at C-8 was carried out due to two- and three-bond connectivities of C-8 with H-7 ($\delta_{\rm H}$ 1.96, 1H, m; δ_C 56.3 d), H₂-15 (δ_H 2.08, 1H, d, J=16.4 Hz and 2.41, 1H, dd, J=16.4, 9.2 Hz; δ_C 38.9 t), H-6 ($\delta_{\rm H}$ 4.80 1H, d, J=6.8 Hz; $\delta_{\rm C}$ 71.6 d), H-10 ($\delta_{\rm H}$ 1.77, hidden; $\delta_{\rm C}$ 45.5 d) and H-14 ($\delta_{\rm H}$ 4.12, 1H, t, J=4.8 Hz; $\delta_{\rm C}$ 75.1 d) signals in the HMBC spectrum of **1**. The 1H doublet (J=6.8 Hz) distinctive signal at $\delta_{\rm H}$ 4.80 ($\delta_{\rm C}$ 71.6 d) was assigned to H-6 when compared with forsticine 2^7 . Comparison of these two alkaloids showed that they had similarities of NMR data except for some signals such as C-5, C-7, C-10, C-21 (NCH₂) (Table I) and H-6 (forsticine: $\delta 4.90$, d, J=7.0 Hz)⁸. It is of interest to point out the difficulty of separating 6-epiforsticine and forsticine by TLC with a variety of solvent systems. Finally, the structure of 6-epiforsticine was established as 1 by an X-ray diffraction analysis (Figure 1). It is apparent that the structure of forsticine should be accordingly revised from 1 to 2.

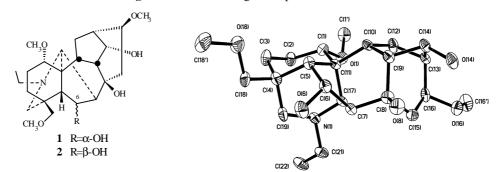


Figure 1 ORTEP drawing for 6-epiforsticine 1

Table 1 ¹³C NMR data of 6-Epiforsticine 1 and Forsticine 2^{8,9} (CDCl₃, 100 MHz)

	1	2		1	2		1	2
carbon	δc	δ _c	carbon	δ _c	δ _c	carbon	δc	δ _c
1	85.7 d	85.7	9	48.6 d	48.9	17	62.3 d	62.6
2	25.7 t	25.8	10	45.4 d	49.6	18	80.6 t	80.8
3	35.0 t	34.8	11	50.5 s	50.6	19	53.9 t	54.3
4	39.1 s	39.1	12	28.5 t	28.8	NCH_2CH_3	49.0 t	50.4
5	50.4 d	49.3	13	38.2 d	38.7	NCH_2CH_3	13.4 q	13.5
6	71.6 d	71.9	14	75.1 d	75.3	1'	56.2 q	56.1
7	56.3 d	54.3	15	38.9 t	39.4	16'	55.9 q	56.4
8	73.7 s	74.0	16	81.9 d	82.2	18'	59.0 q	59.2

Acknowledgment

We thank Dr. Yang-Zhong Zhou, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, for the X-ray diffraction analysis of 6-epiforsticine. We are also grateful to Dr. Si-Ying Chen, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, for donating an authentic sample of forsticine.

References and Notes

- Z. B. Li., F. P. Wang, *Chin. Chem. Lett*, **1995**, *7*, 443.
 Q. Y. Xu., Z. B. Li., F. P. Wang., C. T. Che, *Heterocycles*, **1996**, *43*, 1243.
 Z. B. Li., F. P. Wang., C. T. Che, *J. Nat. Prod*, **1998**, *61*, 1555.
 Z. P. Li, F. P. Wang., C. A. Che, *J. Nat. Prod*, **1998**, *61*, 1655. 2. 3.
- Z. B. Li., F. P. Wang., J. Asian. Nat. Prod. Res, 1998, 1, 87. 4.
- 5.
- 2. B. Li., G. H. Lu., D. L. Chen, F. P. Wang, *Nat. Prod. R&D*, **1997**, *9* (1), 9. C. S. Peng, X. P. Dai., D. L. Chen, F. P. Wang, *Nat. Prod. R&D*, **1999**, *11* (3), 23. 1: ¹H NMR (400 MHz, CDCl₃) δ: 3.02 (1H, dd, *J*=10.4, 6.4 Hz, H-1β), 1.88 (1H, m, H-2β), 2.28 (1H, m, H-2α), 1.52 (1H, ddd, *J*=10.4, 10.4, 3.2 Hz, H-3β), 1.69 (1H, m, hidden, H-3α), 1.96 (1H, hidden, H-5), 4.80 (1H, d, *J*=6.8 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, hidden, 7-H), 2.23 (1H, t, *J*=6.9 Hz, H-6β), 1.96 (1H, m, Hz, H), 2.29 (2H), 4.5 (2H) 6. 7. J=5.2 Hz, H-9), 1.78 (1H, m, hidden, H-12 β), 1.99 (1H, m, hidden, H-12 α), 2.28 (1H, m, hidden, H-13), 4.12 (1H, t, J=4.8 Hz, H-14 β), 2.08 (1H, d, J=16.4 Hz, H-15 α), 2.41 (1H, dd, J=16.4, 9.2 Hz, $H=15\beta$, 3.32 (1H, m, hidden, H=16), 3.06 (1H, s, H=17), 3.40, 3.80 (each 1H, ABq, J=8.4 Hz, H_2-18), 2.62, 2.79 (each 1H, ABq, J=10.8 Hz, H_2-19), 2.58 (2H, m, NCH₂-), 1.09 (3H, t, J=7.2 Hz, NCH₂CH₃), 3.34 (3H, s, OCH₃-1), 3.24 (3H, s, OCH₃-16), 59.0 (3H, s, s)
- OCH₃-18'). S. W. Pelletier., S. Y. Chen., B. S. Joshi., H. K. Desai., *J. Nat. Prod*, **1984**, *47*, 474. B. S. Joshi, J. K. Wunderlich, S. W. Pelletier, *Can. J. Chem*, **1987**, *65*, 99. 8.
- 9.

Received 12 May 2000