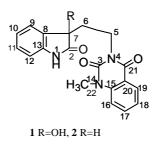
Two New Indole Alkaloids from Evodia rutaecarpa


Guo Ying ZUO^{1,2}, Xiao Sheng YANG¹, Xiao Jiang HAO¹*

¹Laboratory of Phytochemistry, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204 ²Kunming 43 Hospital, PLA, Kunming 650032

Abstract: Two new indole alkaloids, wuchuyuamide I and II were isolated from the fruits of *Evodia rutaecarpa* (Juss.) Benth and their structures were elucidated on the basis of spectral data.

Keywords: Rutaceae, Evodia rutaecarpa (Juss.)Benth, indolinone alkaloids, wuchuyuamides.

The fruit of *Evodia rutaecarpa* (Juss.) Benth is a Chinese traditional drug (Wu-Chu-Yu). The components of Wu-Chu-Yu have been studied by several groups, including indole alkaloids,quinolone alkaloids, limonoids and other kinds¹. Further chemical investigation of this drug led us to isolate two new indole alkaloids **1** and **2**. This is the first time to isolate indolinone alkaloids from this plant.

Wuchuyuamide I (1) , was isolated as colorless needles, m.p. $261-262^{\circ}$ C (CHCl₃-MeOH), $[\alpha]_D^{24}$ 0(c 0.24, C₅H₅N). Its molecular ion peak at m/z 351.1224 by HREIMS revealed the molecular formula C₁₉H₁₇N₃O₄(calcd. 351.1219). The ¹³CNMR (DEPT) spectrum showed nineteen signals of the indolequinazoline alkaloid (8C, 8CH, 2CH₂ and one CH₃), including three carbonyl carbons at 180.6 (s, C₂=O), 161.6 (s, C₂₁=O), 151.0 (s, C₃=O), two methene carbons at 37.7 (t, C₅-CH₂), 36.4 (t, C₆-CH₂), one methyl carbon at 30.6 (q, N₄-CH₃) and one carbinol C-atom at 75.9 (s, C₇)². Interestingly, the skeleton of this compound is indolinone instead of indoline. In the ¹HNMR spectrum, an indolin-2-one N-H signal was observed at 11.65 (1H, s), and the signal of 5.25 (1H,br.) was designated to C₇-OH. The absorption at 3341 and 3190 (OH and NH), 1699 and 1658cm⁻¹(C=O) in IR and 246, 312, 319 nm in UV spectra, together

Guo Ying ZOU et al.

with typical fragments of m/z 335 (M⁺+1-OH), 203 (C₁₁H₁₁N₂O₂), 146 (C₈H₆NO₂-2H, base peak) in EIMS spectrum supported this deduction. Thus the structure of **1** was elucidated as 3-[2-(3-hydroxyindolin-2-onyl)ethyl]-1-methyl-2, 4-quinazolinedione. All proton⁵ and carbon⁶ resonances were assigned by analysis of 1D and 2DNMR spectra (¹H-¹H COSY, HMQC and HMBC) and comparison of the signals with those of the literature data^{2,3}.

Wuchuyuamide II (2) was obtained as needles, m.p. 199-200°C (CHCl₃-MeOH), $[\alpha]_D^{24}$ 0(c 0.24, CHCl₃), with the molecular formula C₁₉H₁₇N₃O₃ by HREIMS at m/z 335.1304 (calc. 335.1270). Its ¹³CNMR (DEPT) spectrum also showed nineteen signals in accordance with those of **1**, except for the absence of a quaternary oxygenated C-atom and the increase of a tertiary C-atom which should be assigned to C₇, the ¹HNMR shift at δ 3.54 (1H, t, J=6.2Hz) supported this assignment. The UV spectrum showed similar absorption to those of **1**. IR absorption of an indolinone NH was observed at 3181cm⁻¹. Compared with compound **1**, the molecular ion peak m/z of **2** in EIMS was reduced by 16, suggested absence of hydroxyl group in **2**. All spectral evidence of **2** enable to elucidate its structure as 3-[2-(3-indolin-2-onyl)ethyl]-1-methyl-2,4-quinazolinedione. The ¹H and ¹³C chemical shifts were also assigned completely by direct comparison with **1** and reported data³⁻⁶.

Acknowledgment

This work was financially supportd by theNational Natural Science Foundation of China (NSFC) for outstanding young scienists to Prof. Dr. Xiao Jiang Hao (39525025), which is gratefully acknowledged.

References and notes

- 1. Y. Q. Tang, X. Z. Feng, L. Huang, *Phytochemistry*, **1996**, *43*(3), 71.
- 2. Ian A. Southewell, *Phytochemistry*, **1981**, *20* (6), 1448.
- 3. N. Shoji, A. Umeyama, A. Iuchi et al, J. Nat. Prod., 1989, 52 (5), 1160.
- 4. H. Fritz., T. Winkler, Helv. Chem. Acta, 1976, 59, 903.
- 5. ¹HNMR data of compounds **1** and **2** (measured in CDCl₃ of **1** and C₅D₅N of **2**, δ in ppm). Compound **1**: δ 11.65 (1H, s, 1-N-H), 4.72, 4.84 (each 1H, m, H-5), 2.81, 2.92 (each 1H, m, H-6), 5.25 (1H, br., 7-O-H), 7.79 (1H, d, J=7.2Hz, H-9), 7.04 (1H, t, J=7.4Hz, H-10), 7.21 (1H, m, H-11), 6.97 (1H, d, J=8.0Hz, H-12), 7.09 (1H, d, J=8.4Hz, H-16), 7.58 (1H, m, H-17), 7.15 (1H, t, J=7.6Hz, H-18), 8.27 (1H, dd, J=6.4, 1.6Hz, H-19), 3.40 (3H, s, H-22); Compound **2**: δ 4.18, 4.42 (each 1H, m, H-5), 2.26, 2.50 (each 1H, m, H-6), 3.54 (1H, t, J=6.2Hz, H-7), 7.62 (1H, m, H-9), 6.88 (1H, t, J=7.5Hz, H-10), 7.21 (1H, m, H-11), 6.81 (1H, d, J=7.7Hz, H-12), 7.07 (1H, d, J=7.6Hz, H-16), 7.31 (1H, d, J=7.4Hz, H-17), 7.11 (1H, d, J=8.3Hz, H-18), 8.14 (1H, dd, J=6.2, 1.6, H-19), 3.51 (3H, s, H-22).
- ¹³CNMR data of compounds 1 and 2. Compound 1: 180.6 (s, C-2), 151.0 (s, C-3), 37.7 (t, C-5), 36.4 (t, C-6), 75.9 (s, C-7), 133.4 (s, C-8), 124.9 (d, C-9), 122.3 (d, C-10), 129.5 (d, C-11), 110.4 (d, C-12), 143.0 (s, C-13), 141.0 (s, C-15), 114.3 (d, C-16), 135.2 (d, C-17), 122.8 (d, C-18), 128.7 (d, C-19), 116.1 (s, C-20), 161.6 (s, C-21), 30.6 (q, C-22); Compound 2: 179.4 (s, C-2), 150.8 (s, C-3), 39.2 (t, C-5), 28.0 (t, C-6), 44.2 (d, C-7), 129.1 (s, C-8), 124.0 (d, C-9), 122.1 (d, C-10), 127.8 (d, C-11), 109.6 (d, C-12), 141.6 (s, C-13), 140.5 (s, C-15), 113.4 (d, C-16), 134.9 (d, C-17), 122.8 (d, C-18), 128.9 (d, C-19), 115.5 (s, C-20), 161.7 (s, C-21), 30.6 (q, C-22).

Received 13 September 2000