Two New Indole Alkaloids from *Evodia rutaecarpa*

Guo Ying ZUO\(^1\)\(^2\), Xiao Sheng YANG\(^1\), Xiao Jiang HAO\(^1\)\(^*\)

\(^1\)Laboratory of Phytochemistry, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204
\(^2\)Kunming 43 Hospital, PLA, Kunming 650032

Abstract: Two new indole alkaloids, wuchuyuamide I and II were isolated from the fruits of *Evodia rutaecarpa* (Juss.) Benth and their structures were elucidated on the basis of spectral data.

Keywords: Rutaceae, *Evodia rutaecarpa* (Juss.) Benth, indolinone alkaloids, wuchuyuamides.

The fruit of *Evodia rutaecarpa* (Juss.) Benth is a Chinese traditional drug (Wu-Chu-Yu). The components of Wu-Chu-Yu have been studied by several groups, including indole alkaloids, quinolone alkaloids, limonoids and other kinds\(^1\). Further chemical investigation of this drug led us to isolate two new indole alkaloids 1 and 2. This is the first time to isolate indolinone alkaloids from this plant.

Wuchuyuamide I (1) , was isolated as colorless needles, m.p. 261-262\(^{\circ}\) C (CHCl3-MeOH), [\(\alpha\)]D\(^{25}\) 0 (c 0.24, C\(_5\)H\(_2\)N). Its molecular ion peak at \(m/z\) 351.1224 by HREIMS revealed the molecular formula C\(_{19}\)H\(_{17}\)N\(_3\)O\(_4\) (calcd. 351.1219). The \(^1\)CNMR (DEPT) spectrum showed nineteen signals of the indolequinazoline alkaloid (8C, 8CH, 2CH\(_2\) and one CH\(_3\)), including three carbonyl carbons at 180.6 (s, C\(_2=O\)), 161.6 (s, C\(_{21}=O\)), 151.0 (s, C\(_3=O\)), two methene carbons at 37.7 (t, C\(_5-CH_2\)), 36.4 (t, C\(_6-CH_2\)), one methyl carbon at 30.6 (q, N\(_4-CH_3\)) and one carbinol C-atom at 75.9 (s, C\(_7\)) \(^2\). Interestingly, the skeleton of this compound is indolinone instead of indoline. In the \(^1\)HNMR spectrum, an indolin-2-one N-H signal was observed at 11.65 (1H, s), and the signal of 5.25 (1H,br.) was designated to C\(_7\)-OH. The absorption at 3341 and 3190 (OH and NH), 1699 and 1658cm\(^{-1}\) (C=O) in IR and 246, 312, 319 nm in UV spectra, together
with typical fragments of \(m/z \) 335 (M\(^++1\)-OH\(\)), 203 (C\(_{11}\)H\(_{11}\)NO\(_{2}\)-2H, base peak) in EIMS spectrum supported this deduction. Thus the structure of \(\mathbf{1} \) was elucidated as 3-[2-(3-hydroxyindolin-2-onyl)ethyl]-1-methyl-2, 4-quinazolinedione. All proton\(^5\) and carbon\(^6\) resonances were assigned by analysis of 1D and 2D NMR spectra (\(^1\)H-\(^1\)H COSY, HMQC and HMBC) and comparison of the signals with those of the literature data\(^2\)\(^-\)\(^3\).

Wuchuyuamide II (\(\mathbf{2} \)) was obtained as needles, m.p. 199-200°C (CHCl\(_3\)-MeOH), \([\alpha]\)\(^D\)\(_{24} \) 0 (c 0.24, CHCl\(_3\)). Its \(^{13}\)CNMR (DEPT) spectrum also showed nineteen signals in accordance with those of \(\mathbf{1} \), except for the absence of a quaternary oxygenated C-atom and the increase of a tertiary C-atom which should be assigned to C\(_7\), the \(^1\)HNMR shift at \(\delta \)3.54 (1H, t, J=6.2Hz) supported this assignment. The UV spectrum showed similar absorption to those of \(\mathbf{1} \). IR absorption of an indolinone NH was observed at 3181cm\(^{-1}\).

Compared with compound \(\mathbf{1} \), the molecular ion peak \(m/z \) of \(\mathbf{2} \) in EIMS was reduced by 16, suggested absence of hydroxyl group in \(\mathbf{2} \). All spectral evidence of \(\mathbf{2} \) enable to elucidate its structure as 3-[2-(3-indolin-2-onyl)ethyl]-1-methyl-2,4-quinazolinedione. The \(^1\)H and \(^{13}\)C chemical shifts were also assigned completely by direct comparison with \(\mathbf{1} \) and reported data\(^3\)\(^-\)\(^6\).

Acknowledgment

This work was financially supported by the National Natural Science Foundation of China (NSFC) for outstanding young scientists to Prof. Dr. Xiao Jiang Hao (39525025), which is gratefully acknowledged.

References and notes

5. \(^1\)HNMR data of compounds \(\mathbf{1} \) and \(\mathbf{2} \) (measured in CDCl\(_3\) of \(\mathbf{1} \) and C\(_5\)D\(_5\)N of \(\mathbf{2} \), \(\delta \) in ppm). Compound \(\mathbf{1} \): \(\delta \) 11.65 (1H, s, 1-N-H), 4.72, 4.84 (each 1H, m, H-5), 2.81, 2.92 (each 1H, m, H-6), 5.25 (1H, br, 7-O-H), 7.79 (1H, d, J=7.2Hz, H-9), 7.04 (1H, t, J=7.4Hz, H-10), 7.21 (1H, m, H-11), 6.97 (1H, d, J=8.0Hz, H-12), 7.09 (1H, d, J=8.4Hz, H-16), 7.58 (1H, m, H-17), 7.15 (1H, t, J=6.6Hz, H-18), 8.27 (1H, dd, J=4.6,1.6Hz, H-19), 3.40 (3H, s, H-22); Compound \(\mathbf{2} \): \(\delta \) 4.18, 4.42 (each 1H, m, H-5), 2.26, 2.50 (each 1H, m, H-6), 5.34 (1H, t, J=6.2Hz, H-7), 7.62 (1H, m, H-9), 6.88 (1H, t, J=7.5Hz, H-10), 7.21 (1H, m, H-11), 6.81 (1H, d, J=7.7Hz, H-12), 7.07 (1H, d, J=7.6Hz, H-16), 7.31 (1H, d, J=7.4Hz, H-17), 7.11 (1H, d, J=8.3Hz, H-18), 8.14 (1H, dd, J=6.2,1.6, H-19), 3.51 (3H, s, H-22).

6. \(^{13}\)CNMR data of compounds \(\mathbf{1} \) and \(\mathbf{2} \). Compound \(\mathbf{1} \): 180.6 (s, C-2), 151.0 (s, C-3), 37.7 (t, C-5), 36.4 (t, C-6), 75.9 (s, C-7), 133.4 (s, C-8), 124.9 (d, C-9), 122.3 (d, C-10), 129.5 (d, C-11), 110.4 (d, C-12), 143.0 (s, C-13), 141.0 (s, C-15), 114.3 (d, C-16), 135.2 (d, C-17), 122.8 (d, C-18), 128.7 (d, C-19), 116.1 (s, C-20), 161.6 (s,C-21), 30.6 (q, C-22); Compound \(\mathbf{2} \): 179.4 (s, C-2), 150.8 (s, C-3), 39.2 (t, C-5), 28.0 (t, C-6), 44.2 (d, C-7), 129.1 (s, C-8), 124.0 (d, C-9), 122.1 (d, C-10), 127.8 (d, C-11), 109.6 (d, C-12), 141.6 (s, C-13), 140.5 (s, C-15), 113.4 (d, C-16), 134.9 (d, C-17), 122.8 (d,C-18), 128.9 (d, C-19), 115.5 (s, C-20), 161.7 (s, C-21), 30.6 (q, C-22).