Diels-Alder Reaction of Hedychenone and Maleic Anhydride

Qing ZHAO¹, Cheng ZOU²*, Xiao Jiang HAO³, Yao Zu CHEN⁴

¹Yunnan College of Traditional Chinese Medicine, Kunming 650200
²Faculty of Pharmacy, Kunming Medical College, Kunming 650031
³Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204
⁴Zhejiang University, Hangzhou 310027

Abstract: Diels-Alder reaction of hedychenone 1 and maleic anhydride 2 gave several products 4-7, whose structures were identified by spectral methods. Effect of temperature on the reaction was disscussed.

Keywords: Diels-Alder reaction, hedychenone, antitumor activity, *hedychium* genus.

Several diterpenoids with antitumor activity, including hedychenone 1, a furanoid compound, were previously isolated from *Hedychium* genus¹. In attempt to obtain some diterpenoid derivatives with higher antitumor activity, Diels-Alder reaction of 1 with maleic acid anhydride 2 was introduced to get some analogues of cantharidin 3, an antitumor medicine in clinical use.

Figure 1

2

Reaction of 1 and excessive 2 at 0° C in chloroform gave two thermodynamically dominated *exo* adducts 4 and 5, together with a mixture of two kinetically dominated *endo* adducts 6 and 7. When the reaction was conducted at 105° C in toulene solution, the adducts were exclusively 4 and 5, with no trace of 6 and 7 observed. It is evident that high temperature favours the formation of *exo* adducts.

The structures of 4,5 as well as 6,7 were determined by spectral methods. NMR

data of 4~7 were listed in Table 1,2. Whether a product is an *exo* adduct or an *endo* one, can be deduced from J_{16-2} and $J_{15-3'}$ in ¹H NMR spectrum($J_{16-2'}$ and $J_{15-3'}$: 0.0~2.0 Hz, *exo*; $J_{16-2'}$ and $J_{15-3'}$: 3.0~4.0 Hz, *endo*).

С	4	5	6&7	С	4	5	6&7
1	40.5	40.2	40.2, 39.8	13	147.9	147.8	148.0
2	18.0	17.9	18.1	14	125.7	125.7	126.0, 126.1
3	43.1	43.1	43.3	15	83.3	83.3	83.3, 82.0
4	32.5	32.4	32.5	16	81.9	81.9	80.9, 80.5
5	61.3	61.2	61.7, 61.3	17	22.8	22.7	22.8
6	199.4	199.5	200.0, 99.5	18	33.5	33.5	33.6
7	128.5	128.5	128.5	19	21.6	21.6	21.7
8	155.4	155.5	155.3	20	15.9	15.8	15.9, 15.7
9	63.2	63.2	63.5, 63.4	1'	169.9	170.1	168.2
10	42.7	42.8	43.0, 42.7	2'	51.0	50.9	49.5
11	132.1	132.2	136.4	3'	48.7	48.7	47.6
12	130.8	130.8	134.2	4'	169.4	169.5	167.0

Table 1¹³C NMR data of 4~7

Table 2¹H NMR data of 4~7

Н	4	5	6&7
5	2.04(s)	2.03(s)	2.01(s), 2.02(s)
7	5.85(s)	5.84(s)	5.84(s)
9	2.90(d, J=10.0 Hz)	2.88(d, J=10.1 Hz)	2.85(d, J=10.3 Hz)
11	5.75(dd, J=10.0, 15.8 Hz)	5.75(dd, J=10.1, 15.9 Hz)	5.74(dd, J=10.3, 15.8 Hz)
12	6.22(d, J=15.8 Hz)	6.21(d, J=15.9 Hz)	6.25(d, J=15.8 Hz)
14	6.26(d, J=1.8 Hz)	6.25(d, J=1.8 Hz)	6.30(s)
15	5.44(d, J=1.8 Hz)	5.42(d, J=1.8 Hz)	5.41(d, J=5.2 Hz)
16	5.53(s)	5.51(s)	5.55(d, J=5.4 Hz)
17	1.76(s)	1.74(s)	1.74(s)
18	0.94(s)	0.94(s)	0.96(s)
19	1.10(s)	1.10(s)	1.10(s)
20	1.17(s)	1.16(s)	1.15(s)
2'	3.30(d, J=6.9 Hz)	3.30(d, J=6.9 Hz)	3.93(dd, J=5.4, 8.2 Hz)
3'	3.10(d, J=6.9 Hz)	3.10(d, J=6.9 Hz)	3.86(dd, J=5.4, 8.2 Hz)

Acknowledgment

Program granted by the Laboratory of Phytochemstry, Kunming Institute of Botany, the Chinese Academy of Sciences

References

1. Q. Zhao, X. J. Hao, Y. Z. Chen, C. Zou, Acta Pharmaceutica Sinica, 1995, 302, 119.

Received 27 January 1999