New Diterpenoid Alkaloids from Spiraea fritschiana var. parvifolia

Min LI $^{\rm 1},$ Xiu Bao DU $^{\rm 1},$ Yue Mao SHEN $^{\rm 2},$ Bin Gui WANG $^{\rm 2},$ Xiao Jiang HAO $^{\rm 2}*$

¹ The Beijing Institute of Pharmaceutical Chemistry, Beijing 102205 ² Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204

Abstrcat: Two new C20 hetisine-type diterpenoid alkaloids, spirafine III (1) and spirafine II (2), were isolated from the roots of *Spiraea fritschiana* var. *parvifolia*. Their structures were elucidated based on HRMS, IR and NMR spectral data, and chemical reaction.

Keywords: Spiraea fritschiana, C20 diterpenoid alkaloid, hetisine, NMR.

Spiraea fritschiana var. *parvifolia* distributed in the north of China is one of the three varieties of *S. fritschiana*¹. Recently three C₂₀ hetisine-type diterpenoid alkaloids, spiradine D $(3)^2$, spirafine III (1) and spirafine II (2) were isolated from its roots. Preliminary pharmaceutical investigation revealed that spirdine D had anti-PAF activity.

Compound 1 is obtained in form of colorless needle crystals, m.p. 192-193°C; $[\alpha]_D^{22.3} - 46.07$ (c 2.0, C₅H₅N). Its molecular formula was determined as C₂₂H₃₁NO₂ by HRMS (341.2279, calc.: 341.2355). Its IR (KBr) spectrum exhibited the absorption at v 1680 cm⁻¹ for the keto group, whose 13 C signal appeared at 206.00 ppm in the 13 C NMR spectrum. Twenty two signals in the ¹³C NMR (DEPT) spectrum were recognized $(1 \times CH_3, 11 \times CH_2, 5 \times CH, 5 \times C)$, including two carbons of the exocyclic double bond [C-16: δ_C 151.49 (s), C-17: δ_C 103.06 (t), δ_H 4.66 (d, 1H, J = 1.8), δ_H 4.492 (d, 1H, J = 1.8). The ion peak at m/z 296 [M⁺ - 45] in EI and the IR absorption at 3495cm⁻¹ (OH) showed the group of HOCH₂CH₂-, and their ¹H and ¹³C NMR data supported this suggestion [C-22: δ_C 59.63 (t), δ_H 3.725 (m, 2H); C-21: δ_C 55.81 (t), δ_H 3.050 (m, 2H)]. Comparison of the ¹H and ¹³C NMR data (Table 1) with those of 3² suggested that 1 was the opened oxazolidine ring product of 3, and this suggestion had been confirmed by the chemical transformation: spirafine III was acquired when 3 was reduced with KBH₄ in MeOH at room temperature (yield: 96%). Compound 1 was named as spirafine III in comparision with spirafine I, previously isolated from the roots of Spiraea fritschiana³.

Compound (2), named as spirafine II, another colorless needle crystals, m.p. 155-156°C; $[\alpha]_D{}^{22.3}$ – 33.16 (c 2.0, C_5H_5N), has the same molecular formula as 1: $C_{22}H_{31}NO_2$, by means of HRMS (341.2327, calc.: 341.2355). The determination of

Min LI et al.

the endocyclic methine group was based on the ¹H and ¹³C NMR [C-15: δ_C 125.72 (d), δ_H 5.25 (s); C-16: δ_C 146.32 (s)], and the chemical shift of C-17 at ¹³C NMR varied greatly from 103.06 ppm: =CH₂ in **1** to 19.52 ppm -CH₃ in **2**, while other data of **2** (**Table 1**) were close to those of the **1** [v (KBr) 1680 cm⁻¹ (C=O), 3495 cm⁻¹ (OH)]. From the information above, the structure of spirfine II was established, and the NMR assignments were carried out on the basis of ¹H – ¹H cosy, HMQC and HMBC experiments. Some selected HMBC correlations are shown in **Figure 2** and the full HMBC data of spirafine II were listed in **Table 1**.

Spirafine III			Spirafine II		
Atom No.	¹³ C	$^{1}\mathrm{H}$	¹³ C	${}^{1}\mathrm{H}$	HMBC
1	35.46	1.717 (m, 2H)	36.44	1.633 (m, 2H)	C2, C3
2	18.87	1.573 (m, 2H)	18.86	1.523 (m, 2H)	C10, C20
3	40.42	1.252 (m, 2H)	40.69	1.257 (m, 2H)	C2, C18, C19
4	37.53		37.41		
5	60.41	1.573 (s)	60.62	1.523 (s)	C18, C10, C9, C20
6	206.00		206.00		
7	52.64	2.661 (dd, 11.9,	51.04	2.843 (dd, 18.39,	C8, C14, C9, C5, C6
		71.55, 2H)		82.06, 2H)	
8	40.30		44.07		
9	50.16	1.573 (s)	52.00	1.531 (s)	C10, C20
10	46.99		46.20		
11	29.62	2.023 (m, 2H)	29.02	1.856 (m, 2H)	C12, C8, C10, C9
12	34.02	2.134 (m)	34.50	2.194 (m)	
13	31.99	1.620 (m, 2H)	33.19	1.853 (m, 2H)	
14	45.84	1.620 (m, 2H)	47.69	1.853 (m)	C12, C10
15	35.34	2.197 (s, 2H)	125.72	5.251 (s)	C17, C12, C8, C7
16	151.49		146.32		
17	103.06	4.660 (br.s)	19.52	1.762 (s, 3H)	C12, C15, C16
		4.492 (br.s)			
18	30.77	1.492 (s, 3H)	30.87	1.508 (s, 3H)	C4, C3, C19, C5, C6
19	56.84	2.661 (dd, 11.92,	56.99	2.679 (dd, 11.92,	C18, C4, C3, C21,
		2H)		314.58, 2H)	C20
20	77.51	2.202 (s)	75.74	2.332 (s)	C13, C1, C8, C21,
					C5
21	55.81	3.050 (m, 2H)	56.04	3.050 (m, 2H)	C22, C20
22	59.63	3.729 (m, 2H)	59.52	3.734 (m, 2H)	

Table 1. 1-D data* for spirafine III, spirafine II and the HMBC data for spirafine II

* 1. ¹H and ¹³ C NMR spectral data were obtained at a Bruker AM-400 NMR spectrometer at 400 MHz and 100 MHz, respectively, with C_5D_5N as solvent. Chemical shifts were in ppm referenced from TMS.

2. All the data of ¹H should be regarded as to one proton except special appointment.

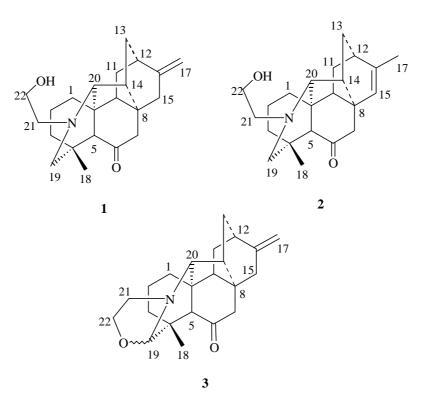
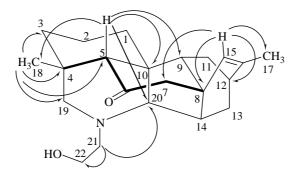



Figure 1 Chemical structures of the diterpenoid alkaloids from Spiraea fritschiana var. parvifolia

Figure 2 Selected HMBC correlations of spirafine II (from H to C)

Acknowledgments

This work was financially supported by the National Foundation for Outstanding Young Scientists to prof. Xiao-Jiang Hao (No. 39525025).

Min LI et al.

References

- *"Flora Reipublicae Popularis Sinicae"*, Science Press, Beijing, **1974**, *Tomus 36*, p 17.
 G. Goto and Y. Hirata, *Tetrahedron Lett.*, **1968**, 25, 2989.
 X. B. Du, H. C. Tang, Z. Y. Li, and S. Y. Chen, *Proceedings of 34th IUPAC Congress, Chemistry for 21st Century*, August 15-20, **1993**, Beijing, China, p 151.

Received 3 June 1999

830