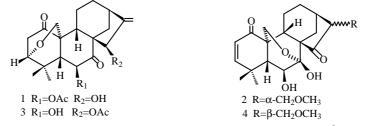
Two new diterpenoids from *Isodon eriocalyx*


Neng Yu CHEN^{1,} *, Min Qing TIAN¹ and Rui WU¹, Han Dong SUN², Chao Ming LI² Zhong Wen LIN²

¹National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 ²Laboratory of Phytochemistry, Kunming Institute of Botany, Academia Sinica, Kunming 650204

Abstract: Two new diterpenoids, maoecrystal U and epi-maoecrystal P were isolated from the leaves of *Isodon eriocalyx*. Their structures were determined as 6β -acetoxy-15 β -hydroxy-3 α , 20epoxy-*ent*-kaur-16-ene-1, 7-dione **1** and 16 (s)-methoxymethyl-6 β , 7 β -dihydroxy-7 α , 20-epoxy-*ent*-kaur-2, 3-ethenylene-1, 15-dione **2** respectively, by spectroscopic methods.

Key words: Isodon eriocalyx; ent-kaurenoids; maoecrystal U; epi-maoecrystal P.

Isodon eriocalyx (Dunn) Hara (Labiatae). It has been used as folk medicine to treat sore throat, inflammation as well as reducing blood pressure¹. Previous studies on this genus have revealed, a number of diterpenoids possess various bioactivities such as anti-tumor and anti-bacterial^{2, 3} activities. In order to find more biologically active substances, we have carefully investigated the chemical constituents of *I. eriocalyx* collected in Zhongdian county of Yunnan province and isolated two new diterpenoids. This paper deals with the elucidation of their structures.

Maoecrystal U 1, colorless crystals (from acetone), mp 250-252.5°C, $[\alpha]_D^{18}$ -112.9 (c 0.62, CHCl₃), was established to have a molecular formula of C₂₂H₂₈O₆ by EI mass ([M]⁺ *m*/z 388) and ¹³CNMR which is same with maoecrystal A 3⁴. The ¹H and ¹³CNMR spectra of 1 were very similar to those of maoecrystal A 3. So we assumed that 1 has the same skeleton as that of maoecrystal, 3 α , 20-epoxy-16-ene-*ent*-kaur-1, 7-dione. Inspection of the ¹H-¹HCOSY and HMBC spetra of 1, 6-H correlaties with an acetoxy, and 15-H correlaties with C-9, C-7, C-16 and C-17. Those facts indicated that the acetoxy and hydroxy should be assigned to C-6 and C-15 position respectively. In NOESY spectrum of 1, the correlations between 6 α -H with 19-CH3 and 15 α -H with 14 β -H suggested the 6-OAc and 15-OH were β -orientation. Thus unambiguous of all carbons were completed and listed in Table 1.

NO.	1 (CDCl ₃)	3 (C ₅ D ₅ N)	2 (CDCl ₃)	$4(C_5D_5N)$
1	207.6 (s)	210.2 (s)	196.8 (s)	197.3 (s)
2	41.6 (t)	42.1 (t)	127.1 (d)	127.4 (d)
3	76.8 (d)	77.3 (d)	161.1 (d)	160.6 (d)
4	37.5 (s)	38.1 (s)	35.8 (s)	36.2 (s)
5	47.9 (d)	51.5 (d)	57.0 (d)	59.3 (d)
6	73.5 (d)	71.9 (d)	73.0 (d)	73.6 (d)
7	205.3 (s)	208.8 (s)	95.2 (s)	96.3 (s)
8	57.0 (s)	56.5 (s)	60.2 (s)	61.1 (s)
9	33.5 (d)	35.0 (d)	48.1 (d)	48.1 (d)
10	51.1 (s)	51.8 (s)	46.4 (s)	46.3 (s)
11	20.4 (t)	20.8 (t)	19.1 (t)	19.3 (t)
12	32.7 (t)	32.8 (t)	29.5 (t)	20.0 (t)
13	38.8 (d)	40.2 (d)	30.0 (d)	29.7 (d)
14	34.6 (t)	35.9 (t)	25.2 (t)	28.1 (t)
15	74.6 (d)	74.8 (d)	221.1 (s)	222.5 (s)
16	152.6 (s)	151.6 (s)	58.4 (d)	56.6 (d)
17	107.1 (t)	108.3 (t)	71.7 (t)	69.0 (t)
18	29.0 (q)	29.5 (q)	29.9 (q)	30.3 (q)
19	22.9 (q)	23.1 (q)	24.6 (q)	34.2 (q)
20	62.0 (t)	62.4 (t)	65.5 (t)	65.6 (t)
OAc	169.6, 20.6	170.3, 21.0		

Tabale 1. ¹³CNMR data of compounds (1-4) (100.6 Mhz, δ in ppm)

Epi-macoecrystal P **2**, colorless needles (from acetone), mp 222-224.5°C, $[\alpha]_D^{25}$ -14.2 (c 0.62, CHCl₃), was established to have a molecular formula of C₂₁H₂₈O₆ by FABMS ([M+1]⁺ *m/z* 377) and ¹³CNMR. The ¹H and ¹³CNMR spectra of **2** were very similar to those of maoecrystal P **4**⁵ except the signals of C-12 and C-14 (see **Table 1**). Because they have the same formula and situation groups by inspecting the IR, UV, ¹H and ¹³CNMR spectra. So, **2** has the same skeleton as that of maoecrystal P possing 6β, 7β-dihydroxy-7α, 20-epoxy-*ent*-kaurene except for the orientation of 16-methoxymethyl. The β-orientation of 16-methoxymethyl of maoecrystal P was deduced from the upfield shift of C-12 (δ 20.2 ppm) due to the γ-steric compression effect between 16β-methoxymethyl group and 12β-H. So we suggested that the 16-methoxymethyl group of **2** is α-orientation which deduced from the upfield shift of C-14 (δ 25.2 ppm) because of the γ-steric compression effect between 16α-methoxymethyl group and 14β-H. The NOESY spectra also suggested that the 16-methoxymethyl is α-orientation because of the correlation between 16βH with 12β-H.

References

- 1. C. Y. Wu and H. W. Li, *Flora Reipublicae Popularis Sinicae*, Tomus (66), Labiate (2), Beijing Science press, **1977**, 439.
- 2. K. Fuji, M. Node, M. Sai, S. Takeda and N. unemi, Chem. Pharm. Bull., 1989, 37, 1472.
- 3. T. Fujita, Y. Takeda, H. D. Sun, Y. minami, T. marunaka, S. takeda, Y. Yamada and T. Togo, *Planta Med.*, **1988**, *5*, 414.
- 4. C. B. Li, H. D. Sun and J. Zhou, Acta Chimica Sinica, 1988, 46, 657.
- 5. J. Wang, Z. W. Lin and H. D. Sun, Acta Botanica Yunnanica, 1997, 19 (4), 438.

Received 13 July 1998