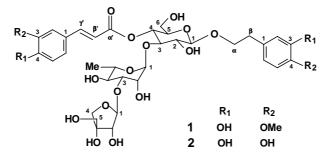
A New Phenylpropanoid Glycoside: Serratumoside A from Clerodendrum serratum

Hui YANG^{1,2}, Ai Jun HOU¹, Shuang Xi MEI¹, Li Yan PENG¹, Han Dong SUN¹*


¹Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 ²Chemistry Department, College of Life Science and Chemistry, Yunnan University, Kunming 650091

Abstract: A new phenylpropanoid glycoside, serratumoside A, was isolated from the aerial parts of *Clerodendrum serratum* var. *amplexifolium* Moldenke. Its structure was determined by spectral and chemical methods.

Keywerds: Clerodendrum serratum, Verbenaceae, phenylpropanoid glycoside, serratumoside A.

In the previous $papers^{1,2,3,4}$, we have reported some chemical constituents from *Clerodendrum serratum* var. *amplexifolium* Moldenke. A continuation of our studies on the same plant led to the isolation of a new phenylpropanoid, serratumoside A (1), which is reported in this paper.

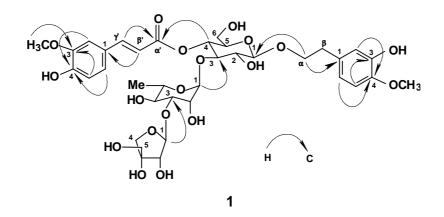
Figure 1

Serratumoside A (1) with three known phenylpropanoid glycosides identified as acteoside⁵, martinoside⁶ and myricoside⁷, respectively, were isolated from the *C. serratum.* Compound 1 was isolated as a brown amorphous powder, $[\alpha]_{D}^{19}$ + 89.42 (c 0.261, MeOH), the negative FABMS gave quasimolecular ion peak at m/z 783 [M-1]⁷, suggesting the molecular formula as C₃₆H₄₈O₁₉, which was confirmed by the high resolution negative FABMS (found [M-1]⁷ 783.2640, calcd. 783.2711) and the NMR

Hui YANG et al.

spectral data of **1**. Its UV [λ_{max} (log ϵ): 214.5 (5.15), 258 (4.73), 282.0 (4.59) and 325.5 (5.21) nm] and IR (v: 3417 br., 1705, 1630 and 1595 cm⁻¹) spectra showed the presence of hydroxyl groups, α , β -unsaturated ester and aromatic rings. The ¹H and ¹³C NMR spectral data (**Table 1** and **2**) of **1** showed that the signals were in good agreement with those of myricoside (**2**) except for the differences in the aglycone and acyl moieties, *i.e* the existence of two additional methoxy groups [δ_H 3.75 (3H, s); δ_C 55.8 (q) and δ_H 3.83 (3H, s); δ_C 55.8 (q) in the aglycone and acyl moiety, respectively.

Proton	1	2	
Aglycone			
2	6.83 d (1.8)	6.62 d (1.7)	
5	6.71 d (8.1)	6.63 d (7.6)	
6	6.67 dd (8.1, 1.9)	6.50 dd (8.0, 1.8)	
αа	3.89 m	3.84 m	
αb	3.67 m	3.60 m	
β	2.76 m	2.70 m	
OMe	3.75 s		
Acyl moiety			
2	7.32 d (1.8)	7.04 d (1.8)	
5	6.84 d (8.1)	6.76 d (8.0)	
6	7.12 dd (8.0, 1.8)	6.99 dd (8.2, 1.8)	
β'	6.44 d (15.8)	6.22 d (15.8)	
γ'	7.58 d (15.8)	7.46 d (15.8)	
OMe	3.83 s		
Glucosyl moiety			
1	4.41 d (7.6)	4.37 d (7.8)	
2	3.20 m	3.17 m	
3,5	3.72 m	3.69 m	
4	4.71 t (9.7)	4.68 t (9.7)	
6		3.43 m	
6a	3.45 m		
6b	3.40 m		
Rhamnosyl moiety			
1	5.06 br.s	5.02 br.s	
2, 3	3.72 m	3.69 m	
4	3.14 m	3.11 m	
5	3.37 m	3.33 m	
6	1.01 d (6.1)	0.96 d (6.1)	
Apiosyl moiety			
1	4.81 d (2.7)	4.77 d (2.9)	
2	3.72 m	3.69 m	
- 4a	3.80 d (9.2)	3.78 d (9.4)	
4b	3.58 d (9.2)	3.55 d (9.4)	
5	3.32 m	3.27 m	


Table 1 ¹H NMR spectral data of compounds 1 and 2 in pyridine- d_5 (500MHz, δ in ppm from TMS and J in Hz)

Acidic hydrolysis of 1 gave glucose, rhamnose and apiose (identified by TLC

A New Phenylpropanoid Glycoside: Serratumoside A 325 from Clerodendrum serratum

comparing with authentic samples). Additionally, its ¹H and ¹³C NMR spectral data showed three anomeric signals at $\delta_{\rm H}$ 4.41 (1H, d, J = 7.6 Hz) and $\delta_{\rm C}$ 102.3 (d); $\delta_{\rm H}$ 5.06 (1H, br. s) and $\delta_{\rm C}$ 101.3 (d) and $\delta_{\rm H}$ 4.81 (1H, d, J = 2.7 Hz) and $\delta_{\rm C}$ 109.2 (d), which were attributed to glucose, rhamnose and apiose by the ¹H-¹H COSY, HMQC and HMBC spectra of **1**. Further analysis of HMBC, HMQC-TOCSY spectra and comparison of the NMR spectral data of **1** with those of **2**, the ¹H and ¹³C NMR spectral signals of sugar moieties could be assigned. The negative FABMS produced the fragment (*m*/*z* 651 [M-Api-1]⁻), which revealed the apiose as a terminal sugar. From the HMBC spectrum of **1**,

Figure 2 The key ¹H-¹³C long-range correlations observed in the HMBC spectrum of 1

some principal ¹H-¹³C long range correlations (Figure 2) were clearly observed between the protons (δ 3.75) of a methoxy group and C-3 (δ 148.0) of acyl moiety; the protons (\delta 3.83) of a methoxy group and C-4 (\delta 145.9) of aglycone moiety; H-5 (\delta 6.84) of acyl moiety and C-3 (δ 148.0) of acyl moiety; H-2 (δ 7.32) and H-6 (δ 7.12) of acyl moiety and C-4 (\delta149.5) of acyl moiety, respectively; H-5 (\delta 6.71) of aglycone and C-3 (\delta146.2) of aglycone; H-2 (\ddot 6.83), H-6 (\ddot 6.67) of aglycone and C-4 (\ddot 145.9) of aglycone, respectively; H-1 (δ 4.41) of glucose and C- α (δ 70.2) of aglycone; H-4 (δ 4.71) of glucose and C- α ' (δ 166.0) of acyl moiety; H-1 (δ 5.06) of rhamnose and C-3 (δ 78.9) of glucose; and H-1 (δ 4.81) of apiose and C-3 (δ 76.1) of rhamnose. These facts indicated that the linkages among aglycone, acyl moiety, glucose, rhamnose and apiose of 1 were consistent with those of 2 and showed the two additional methoxy groups were attached to the C-3 position of acyl moiety and the C-4 position of aglycone, respectively. Therefore, serratumoside A was deduced to be 3-hydroxy-4-methoxy- β -phenethyl-O- β -D-apiofuranosyl- $(1\rightarrow 3)$ - α -L-rhamnopyranosyl- $(1\rightarrow 3)$ -4-O-feruloyl- β -Dglucopyranoside. Its structure was shown in Figure 1.

С	1	2	С	1	2
Aglycone			Glc moiety		
1	131.1 s	129.2 s	1	102.3 d	102.2 d
2	112.4 d	115.5 d	2	74.5 d	74.4 d
3	146.2 s	144.9 s	3	78.9 d	78.9 d
4	145.9 s	143.5 s	4	69.5 d	69.4 d
5	116.4 d	116.4 d	5	72.9 d	72.8 d
6	119.6 d	119.6 d	6	67.2 t	67.1 t
α	70.2 t	70.4 t	Rha moiety		
β	35.0 t	35.0 t	1	101.3 d	101.3 d
OMe	55.8 q		2	70.6 d	70.5 d
Acyl moiety	1		3	76.1 d	75.9 d
1	125.8 s	125.5 s	4	71.7 d	71.7 d
2	111.2 d	114.8 d	5	68.9 d	68.8 d
3	148.0 s	145.9 s	6	18.2 q	18.2 q
4	149.5 s	148.5 s	Api moiety	1	-
5	115.6 d	115.8 d	1	109.2 d	109.2 d
6	123.3 d	121.6 d	2	76.1 d	75.9 d
α'	165.9 s	165.8 s	3	78.9 s	78.9 s
β'	114.0 d	113.4 d	4	73.5 t	73.4 t
γ'	146.3 d	145.6 d	5	63.2 t	63.2 t
OMe	55.8 q				

Table 2 ¹³C NMR spectral data of compounds **1** and **2** in pyridine- d_5 (125.8 MHz, δ in ppm from TMS)

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 29772039).

References

- 1 H. Yang, A.J. Hou, B. Jiang, Z.W. Lin, H.D. Sun, Acta Botanica Yunnanica (in press).
- 2 H. Yang, J. Wang, A.J. Hou, Z.W. Lin, H.D. Sun, Chinese Chemical Letters (in press).
- 3 H. Yang, B. Jiang, Z. Na, Y.P. Guo, H.D. Sun, Chinese Chemical Letters (in press).
- 4 H. Yang, Q. Mu, Y.N. He, H.D. Sun, *Chinese Chemical Letters* (submitted).
- 5 S. Hiroko, S. Yutaka, O. Kazunoki, et al, Phytochemistry, **1987**, 26 (8), 1981.
- 6 S. Hiroshi, T. Heihachiro, E. Tohru, et al, Chem. Pharm. Bull., 1978, 26 (7), 2111.
- 7 Cooper Raymond, Snolomon Philippa H., Kubo Isao, et al, J. Am Chem. Soc., **1980**, 102 (27), 7953.

Received 27 October 1999 Revised 21 December 1999