A New Monoterpene Glycoside from Swertia punicea

Xin MING¹, Ming Hua QIU¹, Rui Lin NIE¹, Guo Lin ZHANG²*

¹ Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204
² Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041

Abstract: A new monoterpene glycoside, 2,6-dimethyl-2*E*,6*E*-octadienoic acid 1,6'-lactone 8- β -D-glucopyranoside, was isolated from *Swertia punicea*, accompanying with six known compounds 1-*O*-primeverosyl-3,7-dimethoxy-8-hydroxyxanthone, 1-*O*-primeverosyl-3,7,8-tri-methoxyxan-thone, *epi*-eustomoside, 1-hydroxy-3,7,8-trimethoxyxanthone, 1,8-dihydroxy-3,7-dimethoxy xanthone and isovitexine. Their structures were elucidated based on spectral evidence.

Keywords: Swertia punicea, monoterpene glycoside, xanthone, epi-eustomoside, isovitexine.

The plant *Swertia punicea* Hemsl. (Gentianaceae), distributed in Southwest China, is used in Chinese medicine for acute bilious hepatitis and cholecystitis¹. Previous investigations of this plant have led the isolation of various compounds². In this investigation, seven compounds were isolated from the whole plants of *S. punicea*, collected in E-Shan, Yunnan Province in July, 1997 and identified by P. Y. Bei in Kunming Institute of Botany, Chinese Academy of Sciences, where the specimen is deposited. On the basis of spectral data, they were determined to be new compound, 2,6-dimethyl-2*E*,6*E*-octadienoic acid 1,6'-lactone 8-β-D-glucopyranoside (1), and known compounds 1-*O*-primeverosyl-3,7-dimethoxy-8-hydroxyxanthone^{3,4}, 1-*O*-primeverosyl-3,7,8-trimethoxyxanthone^{3,5}, *epi*-eustomoside⁶, 1-hydroxy-3,7,8-trimethoxyxanthone⁴ as well as isovitexine⁷.

Compound 1, mp.100-101°C (MeOH), $[\alpha]_D^{20}=18.8$ (MeOH, c 1.0), white crystals, gives a base peak in FABMS (negative mode) at m/z 655 ([2M-1]⁻). The EIMS showed the ion peaks at m/z 327([M-1]⁺), 244, 166 ([M-C₆H₁₀O₅]⁺), 121. UV λ_{max}^{MeOH} nm: 268. IR v^{KBr} cm⁻¹: 1709, 1647, 1448, 1418. Sixteen signals were observed in the ¹³C NMR spectrum (DMSO-d₆, **Table 1**). After hydrolysis 1 in 3 mol/L HCl (aq.) the sugar was identified as D-glucose by comparing with authentic sample in PTLC. The ¹H NMR signal at δ 4.09 (d, 1H, *J*=8 Hz) and its corresponding ¹³CNMR signal at δ 100.6 suggested the presence of β -D-glucopyranosyl. From ¹H NMR spectrum two methyl groups at δ 1.74 and 1.50 (each, 3H) and two olefinic protons at δ 6.60 (t, 1H, *J*=6.8 Hz) and 5.27 (t, 1H, *J*=7.2 Hz) were recognized. The IR absorption at v 1709 cm⁻¹ and ¹³C NMR signal at δ 166.8 suggested 1 is an ester. The ¹³C NMR signals at δ 141.3, 139.3, 127.4 and 121.2 suggested two trisubstituted double bonds, whose configuration could be determined as *E* on the basis of ¹³C NMR (in CD₃OD) signals at δ 16.27 and 12.67 for 6-Me and 2-Me respectively, because the corresponding methyl groups in the *Z* analogue

resonate at δ about 23⁸ and 17 ppm^{9, 10}. According to HMQC and HMBC, the structure of 1 was thus elucidated as 2,6-dimethyl-2E,6E-octadienoic acid 1,6'-lactone 8-β-D-glucopyranoside.

Figure 1 Structure of 1

Table 1 ¹H- and ¹³C NMR Data of 1 (for ¹H, 400 MHz; for ¹³C, 100 MHz)

No	δ_{C} (DMSO-d ₆)	$\delta_{C}(CD_{3}OD)$	$\delta_{\rm H}$ (DMSO-d ₆)	$\delta_{\rm H} ({\rm CD}_3 {\rm OD})$
1	166.8	169.28		
2	127.4	129.06		
3	141.3	143.21	6.60 (t, 6.8)	6.75 (m)
4	25.6	27.11	2.28 (m)	2.39 (m)
5	37.4	39.94	2.15 (m)	2.23 (m)
6	139.3	140.07		
7	121.2	122.82	5.25 (t, 7.2)	5.39 (m)
8	64.3	65.54	4.10 (m)	4.15 (m), 4.25 (m)
2-Me	12.6	12.67	1.74 (s)	1.83 (s)
6-Me	15.3	16.27	1.50 (s)	1.63 (m)
1'	100.6	102.12	4.09 (d, 8.0)	4.12 (d, 8.0)
2'	73.2	75.37	2.94 (m)	3.47 (t, 7.0)
3'	73.8	77.96	3.30 (m)	3.35 (t, 7.0)
4'	70.9	72.47	2.96 (m)	3.18 (t, 7.0)
5'	76.5	75.02	3.12 (m)	3.15 (m)
6′	63.2	65.54	4.75 (d, 11.0)	4.56 (dd, 9.5, 1.5)
			3.96 (m)	4.15 (m)

Acknowledgment

Di-Ao Science Foundation supported this work.

References

- Jiangsu New Medical College, "Dictionary of Chinese Medicine", Vol. 1, Shanghai Renming Publishing, Shanghai, **1977**, p.210. 1.
- 2.
- 3.
- Publishing, Shanghai, 1977, p.210.
 P. Tan, Y. L. Lin, C.Y. Hou, *Yaoxue Xuebao*, 1993, 28, 522.
 K. Hostettmann, A. Jacot-Guillarmod, *Helv. Chim. Acta*, 1976, 59, 165.
 B. L. Hu, J. Y. Ding, H. F. Sun, S. F. Fan, *Zhiwu Xuebao*, 1991, 33, 507.
 M. Goetz, F. Maniliho, A. Jacot-Guillarmod, *Helv. Chim. Acta*, 1978, 61, 1549.
 Y. H. Lo, R. L. Nie, *Yaoxue Xuebao*, 1992, 27, 125.
 D. Davoust, M. Massias, D. Molho, *Org. Mag. Res.*, 1980, 13, 218.
 B. Gering-Ward, P. Junior, *Planta Medica*, 1989, 55, 75.
 G.A. Gross, O. Sticher, C. Anklin, *Helv. Chim. Acta*, 1987, 70, 91.
 G.A. Gross, O. Sticher, *Helv. Chim. Acta*, 1986, 69, 156. 4. 5.
- 6.
- 7. 8.
- 9.
- 10. G.A. Gross, O. Sticher, Helv. Chim. Acta, 1986, 69, 156.

Received 26 January 2000