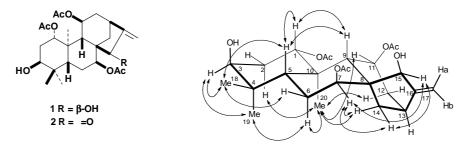
Two New ent-Kaurane Diterpenoids from Isodon adenantha

Bei JIANG, Ji Chun XU¹, Hui YANG, Qin Shi ZHAO, Han Dong SUN*


Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: Two new *ent*-kaurane diterpenoids, adenanthins B (1) and C (2), were isolated from the EtOAc extract of *Isodon adenantha*. Their structures were elucidated by spectroscopic evidences.

Keywords: Isodon adenantha, Labiatae, ent-kaurane diterpenoids, adenanthins B (1) and C (2).

As a medicinal herb locally used for the treatment of enteritis and dysentery in Yunnan province², *Isodon adenantha* (Diels) Hara has been previously studied, which led to the isolation of several *ent*-kaurane diterpenoids including a new one³⁻⁵. In continuation of our research on the bio-active constituents from *Isodon* species⁶, two new *ent*-kaurane diterpenoids, adenanthins B (1) and C (2), were isolated from *I. adenantha* collected in Dali, Yunnan. In this paper, we report the structural elucidation of these new compounds by spectral analysis.

Figure 1 Key ROESY correlations of compound 1

Adenanthin B (1), colorless crystals, possessed a molecular formula of $C_{26}H_{38}O_8$ deduced by the negative FABMS molecular ion peak at m/z 479 combining with analysis of its ¹H and ¹³C NMR spectral data. The IR, MS and NMR of 1 indicated the presence of three acetoxyl groups, three methyl groups, five methylenes (including one *exo*-methylene group), eight methines (including five oxygenated methines) and four quaternary carbons. Considering the structures of the compounds isolated from this plant, 1 was suggested to have an *ent*-kaurene skeleton. This conclusion was verified by 2D-NMR experiments. In the HMBC spectrum, the correlations were clearly observed among Me-20 (with C-1, C-5, C-9 and C-10), H-5 (with C-3, C-4, C-6, C-7, C-10 and Me-18, 19), H-11 (with C-8, C-10, C-12 and C-13) and H-15 (with C-7, C-14 and C-16). Meanwhile, according to the cross peaks in HMBC spectrum, three acetoxyl groups were

Bei JIANG et al.

obviously located at C-1, C-7 and C-11, respectively. Moreover, inspection of MS and NMR spectra of **1** suggested the presence of two hydroxyl groups at C-3 and C-15. The relative configurations of the substituents were revealed by NOE experiment, and the key correlations in ROESY spectrum were shown in **Figure 1**. Thus, **1** was elucidated as 3β , 15β -dihydroxy- 1α , 7β , 11β -triacetoxy-*ent*-kaur-16-en.

Using the same methods mention-above, **2** was determined as 3β -hydroxy-1 α , 7β , 11β - triacetoxy-*ent*-kaur-16-en-15-one.

Adenanthin B (1) ¹H NMR (400.13 MHz, C_5D_5N) δ : 6.45 (1H, *br s*, OH-3), 5.90 (1H, *t*, *J* = 3.8 Hz, H-11 α), 5.83 (1H, *dd*, *J* = 5.1, 10.6 Hz, H-1 β), 5.23 (1H, *s*, H-17 α), 5.18 (1H, *br s*, H-7 α), 4.95 (1H, *d*, *J* = 2.5 Hz, H-17b), 4.43 (1H, *dd*, *J* = 2.5, 11.1 Hz, H-15 α), 3.71 (1H, *t*, *J* = 2.5 Hz, H-3 α), 3.37 (1H, *d*, *J* = 11.1 Hz, OH-15), 2.62 (1H, *br s*, H-9 β), 2.58 (1H, *dd*, *J* = 1.8, 12.4 Hz, H-5 β), 2.50 (1H, *m*, H-13 α), 2.12 (2H, *overlap*, H₂-2), 1.98 (2H, *overlap*, H₂-12), 1.75 (1H, *overlap*, H-14 α), 1.72 and 1.75 (each 1H, *overlap*, H-6 α and 6 β), 1.28, 1.12 and 0.90 (each 3H, *s*, Me-20, 18, 19), 1.21 (1H, *dd*, *J* = 4.4, 11.9 Hz, H-14 β), 2.19, 2.10 and 1.84 (each 3H, *s*, 3×OAc).

Adenanthin C (**2**) ¹H NMR (400.13 MHz, C₅D₅N) δ : 6.46 (1H, *br s*, OH-3), 5.92 (1H, *t*, *J* = 4.3 Hz, H-11 α), 5.77 (1H, *dd*, *J* = 4.4, 11.0 Hz, H-1 β), 5.87 (1H, *s*, H-17a), 5.42 (1H, *br s*, H-7 α), 5.10 (1H, *s*, H-17b), 3.69 (1H, *br s*, H-3 α), 2.59 (1H, *s*, H-9 β), 2.73 (1H, *dd*, *J* = 5.2, 9.3 Hz, H-5 β), 2.88 (1H, *m*, H-13 α), 2.29 (2H, *overlap*, H₂-2), 2.11 (2H, *overlap*, H₂-12), 2.15 (1H, *overlap*, H-14 α), 2.18 (2H, *overlap*, H₂-6), 1.35, 1.11 and 0.89 (each 3H, *s*, Me-20, 18, 19), 1.55 (1H, *br d*, *J* = 10.6 Hz, H-14 β), 2.15, 2.15 and 1.69 (each 3H, *s*, 3×OAc).

С	1	2	С	1	2
C-1	80.3 (d)	80.5 (d)	C-14	35.4 (t)	36.3 (t)
C-2	33.7 (t)	33.6 (t)	C-15	81.4 (d)	204.7 (s)
C-3	75.2 (d)	73.0 (d)	C-16	158.3 (s)	151.6 (s)
C-4	37.7 (s)	38.0 (s)	C-17	105.7 (t)	112.6 (t)
C-5	39.1 (d)	39.5 (d)	C-18	28.8 (q)	29.3 (q)
C-6	24.8 (t)	25.0 (t)	C-19	22.2 (q)	22.5 (q)
C-7	78.7 (d)	75.6 (d)	C-20	14.2 (q)	15.1 (q)
C-8	48.0 (s)	51.0 (s)	OAc	170.7 (s)	170.7 (s)
C-9	50.2 (d)	56.3 (d)		170.4 (s)	170.5 (s)
C-10	43.0 (s)	44.0 (s)		169.0 (s)	169.6 (s)
C-11	70.6 (d)	70.2 (d)		21.9 (q)	22.2 (q)
C-12	40.2 (t)	39.3 (t)		21.5 (q)	21.9 (q)
C-13	38.6 (d)	37.0 (d)		21.3 (q)	21.4 (q)

Table 1. ¹³C NMR Data for Adenanthins B (1) and C (2) in C₅D₅N (100.6 MHz, δ in ppm)

References

- 1 The student of grade 96' for Yunnan College of Traditional Chinese Medicine, Kunming 650200.
- 2 C. Y. Wu, H. W. Li, *Flora Republicae Popularis Sinicae*, Beijing Academic Press, Beijing, **1977**, 66, 534.
- 3 Y. L. Xu, H. D. Sun, D. Z. Wang, *Tetrahedron Letters*, **1987**, *28*, 499.
- 4 Z. W. Lin, X. Y. Shen, H. D. Sun, Acta Botanica Yunnanica, 1992, 14, 343.
- 5 Y. H. Wang, Y. Z. Chen, H. D. Sun, Z. W. Lin, Acta Scientiarum Naturalium Universitatis Sunyatseni, **1998**, 37, 122.
- 6 E. Fujita, M. Node, Prog. Chem. Nat. Prod., 1984, 46, 77.

Received 30 May 2000