A New 24, 30-Dinortriterpenoid from Paeonia delavayi

Shao Hua WU, Xiao Dong LUO, Yun Bao MA, Xiao Jiang HAO, Da Gang WU*

Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204

Abstract: A new triterpenoid, 3β , 4β , 23-trihydroxy-24, 30-dinorolean-12, 20(29)-dien-28-oic acid, together with five known compounds, 2α , 3β , 23-trihydroxy-12-oleanen-28-oic acid- β -D-glucopyranosyl ester, palbinone, 2-hydroxy-benzoic acid, vanillic acid, syringic acid, were isolated from the roots of *Paeonia delavayi* Franch. Their structures were characterized by spectral analysis.

Keywords: *Paeonia delavayi* Franch., Paeoniaceae, triterpenoid, 3β, 4β, 23-trihydroxy-24, 30-dinorolean-12, 20(29)-dien-28-oic acid.

We reported some constituents from the plant of *Paeonia delavayi* Franch¹. Further investigation on the chemical constituents of the same plant resulted in the isolation and determination of a new triterpenoid, 3β , 4β , 23-trihydroxy-24, 30-dinorolean-12, 20(29)-dien-28-oic acid **1**, in addition to five known compounds, 2α , 3β , 23-trihydroxy-12-oleanen-28-oic acid- β -D-glucopyranosyl ester², palbinone³, 2-hydroxy-benzoic acid⁴, vanillic acid⁴, syringic acid⁵. In this paper we describe the structural elucidation of the new compound.

Compound 1, obtained as a white amorphous powder, was established to have a molecular formula of $C_{28}H_{42}O_5$ by EIMS at m/z 458 [M]⁺ and ¹³C NMR spectrum. The IR spectrum exhibited the presence of a hydroxyl group (3421 cm⁻¹), a carboxylic group (1719 cm⁻¹) and an exomethylene (1663 and 886 cm⁻¹). The ¹H and ¹³C NMR spectra of 1 were very similar to those of 30-norhederagenin^{6,7}, except for the absence of the methyl group at C-24 and a quaternary carbon at about δ 40 ppm and the presence of a quaternary carbon at δ 75.6, which was attached to a hydroxyl group. In addition the ¹³C NMR spectrum showed 28 carbon signals which suggested the dinor-skeleton of 1. The ¹H NMR spectrum showed two protons at δ 4.79 (s) and 4.74 (s) due to the exomethylene protons of H-29, one proton at $\delta 4.30$ (dd, J = 11.5, 5.2 Hz) assigned to H-3 α , and two protons at δ 4.39 (*d*, *J* = 10.4 Hz) and 4.08 (*d*, *J* = 10.4 Hz) of H-23. In the HMBC spectrum, the cross-peaks from H-19 (δ 2.62 and 2.25) to C-20 [δ 149.0 (quaternary carbon)] and C-29 [δ 106.8 (CH₂)], and from H-29 (δ 4.79 and 4.74) to C-20 and C-19 [δ 41.8 (CH₂)], indicated that the exocyclic double bond was located between C-20 and C-29. Furthermore, the long-range couplings were also observed for H-3 (δ 4.30) to C-23 [δ 64.3 (CH₂)] and C-4 [δ 75.6 (quaternary carbon)], and for H-23 (δ 4.39 and 4.08) to C-4. The NOESY spectrum showed NOE interaction between H-3 and

H-23. Thus, the structure of compound **1** was determined as 3β , 4β , 23-trihydroxy-24, 30-dinorolean-12, 20(29)-dien-28-oic acid.

Compound **1**, $[\alpha]_{D}^{24}$ +89.3 (*c* 0.252, CH₃OH); UV (MeOH) λ_{max} 204.5 nm; IR (KBr) *v*3421, 2936, 1719, 1690, 1663, 1465, 1443, 1382, 1295, 1046, 886 cm⁻¹; ⁻¹H NMR (400 MHz, C₅D₅N, δ ppm): 5.52 (*br s*, 1H, H-12), 4.79 (*s*, 1H, H-29a), 4.74 (*s*, 1H, H-29b), 4.39 (*d*, 1H, *J* = 10.4 Hz, H-23a), 4.30 (*dd*, 1H, *J* = 11.5, 5.2 Hz, H-3), 4.08 (*d*, 1H, *J* = 10.4 Hz, H-23b), 3.24 (*dd*, 1H, *J* = 13.6, 4.6 Hz, H-18), 2.62 (*t*, 1H, *J* = 13.5 Hz, H-19 β), 2.25 (overlap, 1H, H-19 α), 1.79 (*d*, 1H, *J* = 10.8 Hz, H-9), 1.68 (*d*, 1H, *J* = 11.2 Hz, H-5), 1.37 (*s*, 3H, H-25), 1.20 (*s*, 3H, H-27), 1.11 (*s*, 3H, H-26); ⁻¹³C NMR (100 MHz, C₅D₅N, δ ppm): 38.5 (C-1), 27.1 (C-2), 71.1 (C-3), 75.6 (C-4), 48.1 (C-5), 18.3 (C-6), 32.8 (C-7), 39.7 (C-8), 47.2 (C-9), 36.9 (C-10), 23.6 (C-11), 123.1 (C-12), 144.1 (C-13), 42.2 (C-14), 28.2 (C-15), 23.6 (C-16), 46.9 (C-17), 47.9 (C-18), 41.8 (C-19), 149.0 (C-20), 30.2 (C-21), 38.2 (C-22), 64.3 (C-23), 15.6 (C-25), 17.6 (C-26), 26.1 (C-27), 179.2 (C-28), 106.8 (C-29); EIMS (70 eV) *m*/*z* (%): 458 [M]⁺ (9), 427 (45), 412 (5), 248 (12), 232 (100), 204 (23), 187 (98), 173 (35), 159 (30), 131 (37), 105 (46), 91 (45).

Acknowledgment

The authors are grateful for the financial support from the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences.

References

- 1. Y. B. Ma, D. G. Wu, J. K. Liu, Chinese Chemical Lett., 1999, 10(9), 771.
- 2. L. Jayasinghe, G. P. Wannigama, J. K. Macleod, Phytochemistry, 1993, 34(4), 1111.
- 3. S. Kadota, S. Terashima, P. Basnet, T. Kikuchi, T. Namba, *Chem. Pharm. Bull.*, **1993**, 41(3), 487.
- 4. K. N. Scott, J. Amer. Chem. Soc., 1972, 94(24), 8564.
- 5. S. D. Mohammad, M. Ikram, *Planta. Med.*, **1979**, *35*(2), 156.
- 6. A. Ikuta, H. Itokawa, *Phytochemistry*, **1988**, 27(9), 2813.
- 7. K. Kamiya, K. Yoshioka, Y. Saiki, A. Ikuta, T. Satake, Phytochemistry, 1997, 44(1), 141.

Received 18 September, 2000