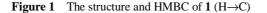
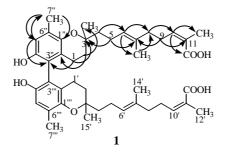
## A New Benzosesquiterpenoid Dimer from Polyalthia cheliensis Hu


Wei Ming ZHU<sup>1,2</sup>, Xin HONG<sup>1</sup>, Yue Mao SHEN<sup>1</sup>, Bi Tao ZHAO<sup>1</sup>, Hong Ping HE<sup>1</sup>, Xiao Jiang HAO<sup>1</sup>\*


<sup>1</sup>Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204 <sup>2</sup>Department of Chemistry, Yunnan Normal Universite, Kunming 650092

**Abstract:** A new benzosesquiterpenoid dimer, 3'', 3'''-bispolycerasoidol (1), along with its monomer, polycerasoidol, were isolated from the dried leaves of *Polyalthia cheliensis* Hu. The structure of **1** was established by spectroscopic methods.

Keywords: Polyalthia cheliensis, Annonaceae, bispolycerasoidol, benzosesquiterpenoid.

The genus plants *Polyalthia*, being rich in bioactive diterpenoids and alkaloids<sup>1,2</sup>, have been attracting much attention. *Polyalthia cheliensis* Hu is a bush mainly distributed in Xishuangbanna, Yunnan Province of China. The previous researches<sup>1</sup> reported the isolations of four clerodane diterpenes from the stem bark of this plants. Recent phytochemical work on its dried leaves results in the elucidations of a new benzosesquiterpenoid dimer, 3'', 3'''-bispolycerasoidol (1) and its monomer, a known benzosesquiterpenoid polycerasoidol<sup>2</sup>.





Compound 1, a brown gum,  $[\alpha]_{D}^{20.6}$  +16.5 (*c* 0.21, CH<sub>3</sub>OH). High-resolution FABMS gave the  $[M+1]^+$  peak at m/z 715.4228 corresponding to the molecular formula C<sub>44</sub>H<sub>59</sub>O<sub>8</sub> [M+H] (calcd. 715.4209). The <sup>1</sup>H and <sup>13</sup>C NMR spectra of 1 were similar to those of polycerasoidol<sup>2</sup>, and the <sup>13</sup>C NMR spectrum of the former showed only 22 signals for four methyls, six methylenes, three methines and nine quaternary carbons, indicating that 1 was a dimer of polycerasoidol. Only one aromatic proton signal

Wei Ming ZHU et al.

( $\delta$  7.08) was observed in the <sup>1</sup>H NMR spectra of **1**, and the <sup>13</sup>C NMR signal at  $\delta$  114.1 for the C3" of polycerasoidol was replaced by  $\delta$  121.8 in **1**, revealing that the C3" and C3" were connected. This linkage was further supported by 0.4 and 2.6 ppm of upfield shifts observed for C2" and C4", respectively (**Table 1**), and unambiguously signed by the analysis of the HMBC experiments, *i.e.* the <sup>1</sup>H-<sup>13</sup>C long-range correlations between H1/H1' ( $\delta$  2.79) and the quaternary carbon at  $\delta$  121.8 (C3"/C3"'), H7"/H7"'' ( $\delta$  2.32) and C1"/C1"'' ( $\delta$  145.9), and C5"/C5"'' ( $\delta$  117.1) (**Figure 1**). Besides, EIMS gave the main fragment peak at *m*/*z* 358 corresponding the cleavage of the bond of C3" and C3"''. Thus the structure of **1** was identified to be as shown.

Table 1 The NMR data of compound polycerasoidol and 1<sup>a</sup>

| polycerasoidol |                                    |                 | 1                                   |                 |
|----------------|------------------------------------|-----------------|-------------------------------------|-----------------|
| position       | $^{1}\text{H}^{b}$                 | <sup>13</sup> C | <sup>1</sup> H <sup>b</sup>         | <sup>13</sup> C |
| 1 (1')         | 2.69 (m, 6.5, 2H)                  | 21.7t           | 2.79 (m, 7.8, 2H)                   | 21.6t           |
| 2 (2')         | 1.74 (dd, 6.5, 9.2), 1.60 (d, 7.3) | 32.1t           | 1.74 (dd, 6.7, 10.2), 1.60 (d, 7.8) | 31.8t           |
| 3 (3')         | /                                  | 75.6s           | /                                   | 75.0s           |
| 4 (4')         | 1.64 (t, 6.9, 2H)                  | 39.9t           | 1.64 (t, 7.6, 2H)                   | 39.5t           |
| 5 (5')         | 2.22 (t, 6.9, 2H)                  | 22.9t           | 2.39 (m, 7.6, 2H)                   | 22.9t           |
| 6 (6')         | 5.31 (t, 6.9)                      | 125.6d          | 5.29 (t, 7.6)                       | 124.6d          |
| 7 (7')         | /                                  | 135.1s          | /                                   | 135.5s          |
| 8 (8')         | 2.22 (t, 6.9, 2H)                  | 40.3t           | 2.18 (t, 7.6, 2H)                   | 40.3t           |
| 9 (9')         | 2.92 (dd, 6.9, 7.1, 2H)            | 28.8t           | 2.92 (dd, 7.1, 7.6, 2H)             | 28.7t           |
| 10 (10')       | 6.02 (t, 7.1)                      | 141.9d          | 5.63 (t, 7.1)                       | 132.7d          |
| 11 (11')       | /                                  | 129.3s          | /                                   | 135.0s          |
| 12 (12')       | 2.11 (s, 3H)                       | 21.7q           | 2.14 (s, 3H)                        | 22.5q           |
| 13 (13')       | /                                  | 170.9s          | /                                   | 173.2s          |
| 14 (14')       | 1.69 (s, 3H)                       | 16.2q           | 1.63 (s, 3H)                        | 16.1q           |
| 15 (15')       | 1.28 (s, 3H)                       | 24.4q           | 1.25 (s, 3H)                        | 24.8q           |
| 1" (1"')       | /                                  | 145.5s          | /                                   | 145.9s          |
| 2" (2"")       | /                                  | 121.9s          | /                                   | 121.5s          |
| 3" (3"")       | 6.18 (s)                           | 114.1d          | /                                   | 121.8s          |
| 4" (4"")       | /                                  | 151.5s          | /                                   | 148.9s          |
| 5" (5"")       | 6.94 (s)                           | 117.1d          | 7.08 (s)                            | 117.1d          |
| 6" (6"")       | /                                  | 127.2s          | /                                   | 126.1s          |
| 7" (7"')       | 2.29 (s. 3H)                       | 16.8q           | 2.32 (s, 3H)                        | 16.5q           |

 $^{a}$  <sup>1</sup>H,  $^{13}$ C NMR and HMBC spectra were obtained at 500 MHz, 125 MHz and 500 MHz, and recorded in C<sub>5</sub>D<sub>5</sub>N at room temperature, respectively.

<sup>b</sup> Coupling constants are presented in Hz. Unless otherwise indicated, all proton signals integrate to 1 H.

## Acknowledgment

This work was financially supported by the National Foundation for Outstanding Young Scientists to Prof. Xiao Jiang Hao (No. 39525025).

## References

- 1. X. J. Hao, X. S. Yang, Z. Zhang, L. J. Shang, *Phytochemistry*, **1995**, 39 (2), 447.
- M. C. Gonzales, A. Serrano, M. C. Zafra-Polo, D. Cortes, K. S. Rao, J. Nat. Prod., 1995, 58 (8), 1278.

Received 31 October, 2000