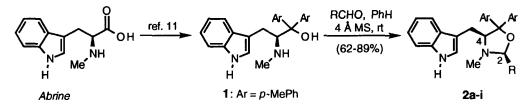


\$0957-4166(96)00133-4

Chiral Ligands Derived from *Abrine*. 2. Oxazolidines as Promoters for Enantioselective Addition of Diethylzinc toward Aromatic Aldehydes

Wei-Min Dai,*a Hua Jie Zhu,a§ and Xiao-Jiang Hao*b

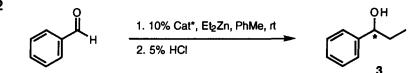
^aDepartment of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong


and

^bKunming Institute of Botany, The Academy of Sciences of China, Heilongtan, Kunming, 650204, Yunnan, China

Abstract: A number of indole-containing chiral oxazolidines 2a-i have been synthesized from *Abrine* readily available from the seeds of *Abrus precatorius*. Catalysis of these oxazolidines for the addition of diethylzinc toward benzaldehyde was examined. A significant role of the substituent(s) in the catalyst on the degree of asymmetric induction was noted. Moderate enantioselectivity up to 59.8% was recorded. Copyright © 1996 Published by Elsevier Science Ltd

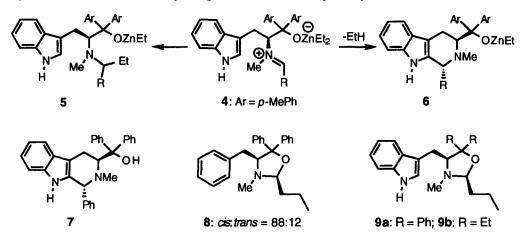
Addition of achiral organometallic reagents toward prochiral carbonyl compounds influenced by chiral ligands¹ has been playing an very important role in synthesis of chiral alcohols and contributes to the rapid development in catalytic enantioselective synthesis.² It has been known that addition of dialkylzinc toward aldehydes could be promoted by chiral β -amino alcohols to produce secondary alcohols in high enantiomeric excess.^{1,3} A hydroxyl group is necessary for the chiral ligand to form a zinc alkoxide as the catalytic species.⁴ Beside cyclic amines, other nitrogen-containing unsaturated heterocycles including pyridines,⁵ pyrimidines,⁶ quinolines,⁷ pyrazoles,⁸ imidazoles,⁸ and oxazolines⁹ can be efficient promoters for the addition of dialkylzinc toward benzaldehyde to provide chiral 1-phenyl-1-propanol in 11-12% ee. We report here on the ethylation of benzaldehyde with diethylzinc promoted by the indole-containing oxazolidines **2a-i**.


Scheme 1

The chiral amino alcohol 1^{11} was synthesized from the alkaloid *Abrine* [(S)-N-methyltryptophan]¹² isolated from the seeds of *Abrus precatorius* collected in Yunnan Province of China. Condensation of 1 with a

number of aldehydes gave the *cis* oxazolidines **2a-i** as a single isomer in good yield (Scheme 1).^{13,14} The catalytic potency of **2a-i** was evaluated by the reaction of diethylzinc with benzaldehyde using 10% catalyst (Scheme 2). The results are summarized in Table 1. In general, the oxazolidines **2a-i** lacking a free hydroxyl group are less efficient promoters. Formation of considerable amount of benzyl alcohol was observed. The asymmetric induction by **2a-i** varied remarkably from 0% to *ca*. 60 % op. It was found that the R group at C₂ of oxazolidines **2a-i** has a determining role on the degree of enantioselectivity. Ligand **2a** possessing a phenyl group at C₂ exhibited no enantioselectivity at all (Table 1, entry 1). A zigzag line was obtained if op of **3**¹⁵ was

Scheme 2



Entry	Cat*	Reation Time	Yield (%) ^a	[α] _D ²⁰ (c) ^b	op%°	Configuration ^c
1	2a: R = Ph	6 days	45.0	0	0	
2	2b: R = Me	94 h	57.3	-17.71 (2.19)	38.8	S
3	2c: R = Et	100 h	51.0	-12.20 (2.10)	26.8	S
4	2d : R = <i>n</i> -Pr	89 h	57.8	-27.25 (3.74)	59.8	S
5	2e : R = <i>n</i> -Bu	100 h	47.2	-3.92 (3.19)	8.6	S
6	2f : R = (CH ₂) ₂ Ph	96 h	52.1	-2.79 (3.41)	6.1	S
7	2g: R = <i>i</i> -Pr	96 h	56.3	+2.61 (3.11)	5.7	, R
8	2 h: R = CH ₂ - <i>i</i> -Pr	100 h	52.7	-15.10 (2.46)	33.1	S
9	2i : R = CH₂- <i>t</i> -Bu	100 h	50.6	-14.50 (2.47)	31.8	S

^aYield is based on the isolated product. Benzyl alcohol was formed in most of the reactions as the by-product. ^b Measured in CHCl₃. ^cThe reported specific rotation $[\alpha]_D$ +45.6 (CHCl₃)¹⁵ for *R* enantiomer was used for the calculation of op%.

plotted against the number of carbon atoms of the R group in 2b-e (Table 1, entries 2-5). Dependency of enantioselectivity on structure of the promoters can be best illustrated by entries 7 and 8. Insertion of one -CH₂-to 2g altered the absolute stereochemistry of 3 from R to S. The *n*-propyl-substituted oxazolidine 2d afforded the best enantioselectivity among the nine ligands listed in Table 1.

The interesting aspect of the indole-containing oxazolidine promoters is the mechanism of catalysis. The lack of a free hydroxyl group in **2a-i** puts a big question mark on their action. One might suggest that a ringopening reaction takes place on mixing the oxazolidines with diethylzinc to form an iminium intermediate **4** which is ethylated to provide the zinc alkoxide **5**. Also, **4** can undergo a Pictet-Spengler reaction¹⁶ to form the zinc alkoxide **6** possessing a 1,2,3,4-tetrahydro- β -carboline skeleton. To address this issue, **2b** was treated with diethylzinc in toluene at rt for 96 h. After acid-base workup and column chromatography, only **2b** was obtained (72% recovery) without loss of optical rotation. Neither 5 nor 6 was detected from the reaction. Thus, we can propose that 5 and 6 are not involved in the catalytic cycle of the ethylation reaction. The 1,2,3,4-tetrahydro- β -carboline 7 was independently synthesized from *Abrine*. ¹⁷ Compound 7 catalyzed the addition of diethylzinc toward 4-chlorobenzaldehyde to give *R*-alcohol in 19% op (71% yield).

Our next question is that does the indole skeleton play any role in catalysis? To answer this, the C₄ benzyl-substituted oxazolidine **8** was prepared¹⁷ from (*L*)-phenylalanine as an inseparable mixture of *cis* and *trans* isomers. Treatment of benzaldehyde with diethylzinc in the presence of **8** (10%) in toluene at rt for 88 h gave *ca.* 20% of (*S*)-**3** with 30% recovery of benzaldehyde. The enantioselectivity induced by **8** was below 40%. The chemical yield of the ethylation reaction using **8** is significantly low than the indole analog **9a** (*vide infra*). These results support that the indole residue in oxazolidines **2a-i** participates in the catalysis.

The effect of substituents at C₅ of the oxazolidines on the catalysis is astonishing. Diphenyl-substituted $9a^{14}$ failed to induce high enantioselectivity (96 h, 59.4% chemical yield, 15.6% op) compared to di-*p*-tolyl analog **2d** (Table 1, entry 4). (*R*)-(+)-(4'-Chlorophenyl)-1-propanol was produced from the reaction of 4'-chlorobenzaldehyde catalyzed by $9b^{14}$ in 7.1% op (117 h, 87.3% chemical yield). The remarkable influence of *p*-tolyl substituent at C₅ on the enantioselectivity was not observed in the indole-containing tertiary amino alcohols reported by us previously.¹¹

In summary, we have confirmed the catalysis of chiral oxazolidines in the enantioselective ethylation of benzaldehyde with diethylzinc. The indole-containing oxazolidines 2a-i and 9a, b were found to promote the ethylation much efficiently than other oxazolidines¹⁰ such as 8 in terms of the chemical conversion and asymmetric induction. Substituents at C₂ and C₅ of the oxazolidines were revealed to dictate the degree of enantioselectivity. Enantiomeric excess up to 59.8% was obtained with oxazolidine 2d. Possible catalytic species 7 which might be formed from reaction of oxazolidine with diethylzinc was investigated and different result from oxazolidine was obtained. Even though the exact mechanism of catalysis by the indole-containing chiral oxazolidines is not clear yet, the above described observations are of encouragement in searching for new chiral promoters for catalytic enantioselective synthesis.

Acknowledgment. This work was supported by a Young Investigator Grant to H. J. Zhu from The Science and Technology Commission of Yunnan Province of China and The Department of Chemistry, HKUST. **References and notes:**

[§]On leave from Kunming Institute of Botany, The Academy of Sciences of China.

- For reviews, see: (a) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49. (b) Soai,
 K.; Niwa, S. Chem. Rev. 1992, 92, 833. (c) Oguni, N. Kikan Kagaku Sosetsu 1993, No. 19, 143.
- (a) Catalytic Asymmetric Synthesis; Ojima, I. Ed.; VCH Publishers, Inc.: New York, 1993. (b) Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons, Inc.: New York, 1994. (c) Enantioselective Synthesis; Gladysz, J. A.; Michl, J. Eds.; Chem. Rev. 1992; Vol. 92; No. 5.
- (a) Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2923. (b) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071.
- 4. Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 6327.
- (a) Soai, K.; Niwa, S.; Hori, H. J. Chem. Soc. Chem. Commun. 1990, 982. (b) Ishizaki, M.; Fujita, K.; Shimamoto, M.; Hoshino, O. Tetrahedron Asymm. 1994, 5, 411. (c) Ishizaki, M.; Hoshino, O. Tetrahedron Asymm. 1994, 5, 1901. (d) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber. 1992 125, 1191.
- Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature, 1995, 378, 767. Shibata, T.; Morioka, H.; Hayase, T.; Choji, K.; Soai, K. J. Am. Chem. Soc. 1996, 118, 471.
- 7. Collomb, P.; von Zelewsky, A. Tetrahedron Asymm. 1995, 6, 2903.
- 8. Kotsuki, H.; Hayakawa, H.; Wakao, M.; Shimanouchi, T.; Ochi, M. Tetrahedron Asymm. 1995, 6, 2665.
- (a) Allen, J. V.; Frost, C.; Williams, J. M. J. Tetrahedron Asymm. 1993, 4, 649. (b) Allen, J. V.; Williams, J. M. J. Tetrahedron Asymm. 1994, 5, 277.
- 10. Hof, R. P.; Poelert, M. A.; Paper, N. C. M. W.; Kellogg, R. M. Tetrahedron Asymm. 1994, 5, 31.
- 11. Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron Asymm 1995, 6, 1857.
- Dictionary of Organic Compounds, 5th ed.; Buckingham, J. Ed.; Champman and Hall: New York, 1982; p 4084.
- The C₂/C₄ cis-isomer of oxazolidine drived from norephedrine is favored under kinetic and thermodynamic conditions, see: Bernardi, A.; Cardani, S.; Pilati, T.; Poli, G.; Scolastico, C.; Villa, R. J. Org. Chem. 1988, 53, 1600.
- 14. Optical rotations of *Abrine*-derived oxazolidines: **2a**, $[\alpha]_D^{20}$ -96.0 (c = 1.34, CHCl₃); **2b**, $[\alpha]_D^{20}$ -12.4 (c = 1.37, CHCl₃); **2c**, $[\alpha]_D^{20}$ -60.5 (c = 1.24, CHCl₃); **2d**, $[\alpha]_D^{20}$ -56.0 (c = 1.71, CHCl₃); **2e**, $[\alpha]_D^{20}$ -50.3 (c = 1.89, CHCl₃); **2f**, $[\alpha]_D^{20}$ -82.4 (c = 1.30, CHCl₃); **2g**, $[\alpha]_D^{20}$ -105.5 (c = 1.33, CHCl₃); **2h**, $[\alpha]_D^{20}$ -67.4 (c = 1.01, CHCl₃); **2i**, $[\alpha]_D^{20}$ -71.7 (c = 1.08, CHCl₃); **9a**, $[\alpha]_D^{20}$ -71.9 (c = 1.06, CHCl₃); **9b**, $[\alpha]_D^{20}$ +28.6 (c = 2.03, CHCl₃).
- 15. Soai, K.; Watanabe, M. Tetrahedron Asymm. 1991, 2, 97.
- 16. Pictet-Spengler reaction, see: Mundy, B. P.; Ellerd, M. G. Name Reactions and Reagents in Organic Synthesis; John Wiley & Sons, Inc.: New York, 1988, p 164.
- 17. Dai, W.-M.; Zhu, H. J.; Hao, X.-J. unpublished results.

(Received in Japan 22 February 1996; accepted 22 March 1996)