Chiral ligands derived from abrine. Part 5: Substituent effects on asymmetric induction in enantioselective addition of diethylzinc to benzaldehyde catalyzed by chiral oxazolidines possessing an indole moiety

Hua-Jie Zhu, ${ }^{\text {a }}$ Bi-Tao Zhao, ${ }^{\text {a }}$ Wei-Min Dai, ${ }^{\mathrm{b}, *}$ Jun Zhou ${ }^{\text {a }}$ and Xiao-Jiang Hao ${ }^{\text {a, } * ~}$
${ }^{a}$ Kunming Institute of Botany, The Chinese Academy of Sciences, Heilongtan, Kunming 650204, Yunnan, China ${ }^{\mathrm{b}}$ Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received 26 June 1998; accepted 22 July 1998

Abstract

A number of the indole-containing chiral oxazolidines possessing the gem-di-p-tolyl and gem-di-o-tolyl groups at C_{5} were synthesized from abrine and the effects of the C_{5} and C_{2} substituents on the asymmetric induction in catalytic enantioselective addition of diethylzinc to benzaldehyde were examined. A working model is proposed to rationalize the asymmetric catalysis by these chiral oxazolidines. © 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Enantioselective addition of dialkylzinc to aldehydes catalyzed by chiral β-amino alcohols ${ }^{1}$ and other chiral promoters is one of the most extensively investigated asymmetric $\mathrm{C}-\mathrm{C}$ bond formation reactions in recent years. Extension of this catalytic enantioselective reaction to ketones ${ }^{2}$ and $\mathrm{C}=\mathrm{N}^{3}$ functionalities further widens its application to the synthesis of chiral alcohols possessing a stereogenic quaternary carbon center and chiral amines. Our recent work on the alkaloid-based asymmetric synthesis has produced several novel classes of chiral promoters containing an indole moiety. ${ }^{4}$ We found that the chiral oxazolidines $\mathbf{1 a} \mathbf{-} \mathbf{j}$ and related compounds, although lacking a hydroxyl group, could catalyze the reaction of $\mathrm{Et}_{2} \mathrm{Zn}$ with benzaldehyde in up to 53.8% ee. ${ }^{4 \mathrm{~b}}$ We describe herein the synthesis and catalysis of chiral oxazolidines $\mathbf{2 a - g}$ having the gem-di-o-tolyl groups at C_{5} and propose a working model to discuss the substituent effect on the catalysis of chiral oxazolidines 1a-j and $\mathbf{2 a - g}$ (Fig. 1).

[^0]

Abrine

1: $\mathrm{Ar}=p$ - Tol
2: $\mathrm{Ar}=0-\mathrm{Tol}$

Fig. 1.

2. Results and discussion

Chiral oxazolidines $\mathbf{1}^{4 \mathrm{~b}}$ and $\mathbf{2}$ were synthesized from the alkaloid, abrine $[(S) \text { - } N \text {-methyltryptophan }]^{5}$ isolated from the seeds of Abrus precatorius collected in the Yunnan Province of China (Scheme 1). Reaction of the methyl ester of abrine with excess p - or $o-\mathrm{TolMgBr}$ afforded the corresponding tertiary β-amino alcohols $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}^{4 \mathrm{a}}$ which were condensed with a number of aldehydes in the presence of 4 \AA MS under very mild conditions $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, rt or PhH , refluxing) to provide chiral cis-2,4-disubstituted oxazolidines 1a-j and $\mathbf{2 a - g}$ in 59-89\% yield (Table 1). The trans-isomers of the oxazolidines were not detected from the condensation reaction in most cases.

Scheme 1.
Table 1
Synthesis of chiral oxazolidines $\mathbf{1}$ and $\mathbf{2}$ from amino alcohols 3a and 3b

Entry	R	1 ($\mathrm{Ar}=p$-Tol) from 3a		$2(\mathrm{Ar}=0-\mathrm{Tol})$ from $\mathbf{3 b}$	
		Method; t, Yield(\%) ${ }^{\text {a }}$	$[\alpha]_{D}{ }^{20}(c)^{\text {b }}$	Method; t, Yield(\%) ${ }^{\text {a }}$	$[\alpha]_{D}{ }^{22}(\mathrm{c})^{\mathrm{b}}$
a	Me	A; $50 \mathrm{~h} ; 88$	-12.4 (1.37)	B; $14 \mathrm{~h} ; 59$	-134.2 (0.18)
b	Et	B; $24 \mathrm{~h} ; 67$	-60.5 (1.24)	B; $14 \mathrm{~h} ; 76$	-199.0 (1.24)
c	$n-\mathrm{Pr}$	A; $35 \mathrm{~h} ; 85$	-56.0 (1.71)	B; $14 \mathrm{~h} ; 77$	-207.1 (0.73)
d	$n-\mathrm{Bu}$	A; $48 \mathrm{~h} ; 65$	-50.3 (1.89)	B; $14 \mathrm{~h} ; 76$	-207.6 (1.89)
e	n-Pent	B; $14 \mathrm{~h} ; 70$	$-50.0(0.49)^{\text {c }}$	B; $14 \mathrm{~h} ; 71$	-206.1 (0.41)
f	$i-\mathrm{Pr}$	A; $48 \mathrm{~h} ; 62$	-105.5 (1.33)	B; $14 \mathrm{~h} ; 85$	-205.2 (0.63)
g	$\mathrm{CH}_{2}-\mathrm{i}-\mathrm{Pr}$	B; $40 \mathrm{~h} ; 89$	-67.4 (1.01)	B; $14 \mathrm{~h} ; 70$	-219.7 (1.78)
h	$\mathrm{CH}_{2}-t$ - Bu	B; $60 \mathrm{~h} ; 67$	-71.7 (1.08)		
i	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	A; $40 \mathrm{~h} ; 86$	-82.4 (1.58)		
j	Ph	A; $66 \mathrm{~h} ; 79$	-96.0 (1.36)		

${ }^{\mathrm{a}}$ Method A: Reaction was carried out in reflexing PhH; Method B: Reaction was performed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. Yields refer to the isolated homogenous materials. ${ }^{\mathrm{b}}$ Recorded in CHCl_{3}. ${ }^{\mathrm{C}}$ Recorded at $22{ }^{\circ} \mathrm{C}$.

Table 2
Reaction of $\mathrm{Et}_{2} \mathrm{Zn}$ with benzaldehyde catalyzed by chiral oxazolidines $\mathbf{1}$ and $\mathbf{2}$

		Cat*: $1\left(\mathrm{Ar}=p\right.$-Tol) ${ }^{\text {a }}$			Cat*: 2 ($\mathrm{Ar}=0-\mathrm{Tol}$)		
	R	Yield(\%) ${ }^{\text {b }}$	ee(\%) ${ }^{\text {c,e }}$	Configuration ${ }^{\text {d }}$	Yield(\%) ${ }^{\text {b }}$	ee(\%) ${ }^{\text {c }}$	Configuration ${ }^{\text {d }}$
a	Me	57.3	23.4	s	60.2	5.5	R
b	Et	51.0	26.4	s	34.0	17.2	R
c	$n-\mathrm{Pr}$	57.8	53.8	s	46.0	22.6	R
d	n-Bu	47.2	6.9	s	62.2	8.5	R
e	n-Pent	34.2	3.1	S	69.0	18.2	R
f	$i-\mathrm{Pr}$	56.3	7.4	R	56.7	1.4	R
g	$\mathrm{CH}_{2}-\mathrm{i}-\mathrm{Pr}$	52.7	32.1	S	38.0	4.7	R
h	$\mathrm{CH}_{2}-t-\mathrm{Bu}$	50.6	28.2	s			
i	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	52.1	5.3	s			
j	$\mathrm{Ph}^{\text {f }}$	45.0	0	----			

${ }^{\text {a D Data taken from ref. 4b. }}{ }^{\text {b }}$ Yield is based on the isolated product. Benzyl alcohol was formed in most of the reactions. ${ }^{\text {c }}$ Determined using HPLC on a CHIRALCEL OD column (i - PrOH :Hexane $=95: 5$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, UV detector at 254 nm). ${ }^{\text {d }}$ The specific rotation $[\alpha]_{\mathrm{D}}+45.6^{\circ}\left(\mathrm{CHCl}_{3}\right)^{6}$ for R enantiomer of 4 was used to determine the configuration. ${ }^{\text {e }}$ The values were reexamined. ${ }^{\dagger}$ Reaction for 6 days.

The catalytic potency of $\mathbf{1 a - j}$ and $\mathbf{2 a - g}$ was examined using the prototype reaction between $\mathrm{Et}_{2} \mathrm{Zn}$ and benzaldehyde with $10 \mathrm{~mol} \%$ of the catalyst in toluene at room temperature and the results are summarized in Table 2. It is interesting to note that the catalysts 1 induced the formation of the (S) enantiomer of 1-phenyl-1-propanol (-)-4 in up to 53.8% ee and in $34.2-57.8 \%$ yield except for chiral oxazolidine $1 f$ bearing an isopropyl group at the C_{2} position. In contrast, only the (R)-enantiomer of 1-phenyl-1-propanol (+)-4 ${ }^{6}$ was formed in up to 22.6% ee and in $34-69 \%$ yield under the catalysis of chiral oxazolidines $\mathbf{2 a - g}$. The opposite asymmetric induction by $\mathbf{1 a - e}, \mathbf{g}-\mathbf{j}$ and $\mathbf{2 a - g}$ is influenced by the gem-diaryl groups at C_{5}. The enantioselectivity is generally high for C_{5} gem-di-p-tolyl-substituted oxazolidines $\mathbf{1}$ compared with the C_{5} gem-di-o-tolyl-substituted analogs $\mathbf{2}$. A plot of the percentage ee versus the carbon number of the substituent R at C_{2} of $\mathbf{1 a - e}$ and $\mathbf{2 a - e}$ is given in Fig. 2. It is concluded that: (a) the enantiomeric excess varies with the carbon number of R at C_{2} with a maximum value recorded for $\mathrm{R}=n$ - Pr for both classes of chiral oxazolidines; and (b) the enantioselectivity of the reaction is much more sensitive to the $\mathrm{C}_{2} \mathrm{R}$ group for the catalysts $\mathbf{1 a} \mathbf{a} \mathbf{e}$ compared with that of $\mathbf{2 a -} \mathbf{e}$, indicating that the $\mathrm{C}_{2} \mathrm{R}$ group in $\mathbf{1 a - e}$ is in close proximity to the reacting centers in the ethyl-transferring transition state. In other words, a loose transition state operates in the reactions catalyzed by chiral oxazolidines 2a-e and low asymmetric induction is achieved.

Generally speaking, the enantioselectivity induced by chiral oxazolidines $\mathbf{1}$ and $\mathbf{2}$ is not very high compared with a variety of hydroxyl group bearing chiral promoters. ${ }^{1}$ However, the current work is interesting in the mechanistic aspects of the catalysis. It was reported that chiral diamines ${ }^{7-9}$ including

Fig. 2. Relationship between the ees of chiral 1-phenyl-1-propanol (4) and the carbon number of R at the C_{2} position of chiral oxazolidine promotors $\mathbf{1}$ and $\mathbf{2}$ used for enantioselective ethylation of benzaldehyde
tertiary diamines catalyze the addition reactions of $\mathrm{Et}_{2} \mathrm{Zn}$ to aldehydes by formation of either the $\mathrm{N}-\mathrm{Zn}$ complexes or zinc amides. ${ }^{8 \mathrm{~b}, \mathrm{c} 10,11}$ The methoxy group in o-anisaldehyde was also reported to form undesirable catalytic species by coordination with $\mathrm{Et}_{2} \mathrm{Zn}$. ${ }^{9 \mathrm{a}}$ The chiral oxazolidines $\mathbf{1 a} \mathbf{a} \mathbf{j}$ and $\mathbf{2 a - g}$ have two basic sites, i.e. the nitrogen and oxygen atoms of the oxazolidine ring. If the indole nitrogen could be deprotonated by $\mathrm{Et}_{2} \mathrm{Zn}$, a third basic site might be available for complexation. Nevertheless, we consider that the nitrogen and oxygen atoms of the oxazolidines contribute primarily to the catalysis through the transition state (TS) 5 (Fig. 3). The oxygen-bound zinc species $\left[\left(\mathrm{E}_{\mathrm{b}}\right)_{2} \mathrm{Zn}_{\mathrm{b}}\right]$ is much more reactive ${ }^{9 \mathrm{a}}$ and will transfer the Et_{b} group onto the $\mathrm{C}=\mathrm{O}$ of benzaldehyde complexed with Zn_{a}, the latter is also coordinated with the nitrogen atom. An alternative to TS 5 is considered by sharing one Et_{a} group on Zn_{a} with Zn_{b} to form a polycyclic assembly (a bridged 5/6/6-ring system) which is likely to be too rigid to work. TS 5 predicts the si-face attack at benzaldehyde to give (S)-4 as the major enantiomer which is consistent with our experimental results of $\mathbf{1 a - e} .{ }^{4 \mathrm{~b}}$ Modification on the gem-diaryl groups at C_{5} can significantly affect the complexation ability of the oxygen atom. With two bulky o-tolyl groups at C_{5}, TS 5 fails to operate because the oxygen atom is incapable of forming a complex due to the severe steric repulsion. Under this circumstance, the Et-transferring zinc species should attack intermolecularly by another zinc complex of the oxazolidine nitrogen or a zinc amide of the indole ${ }^{8 b, c, 10,12}$ at the Zn_{a} coordinated benzaldehyde from the re-face (TS 6) to give $(R)-4$. Due to the great separation among the reacting and the $\mathrm{C}_{2} / \mathrm{C}_{4}$ stereogenic centers, the asymmetric induction of $\mathbf{2 a - g}$ should be low and less sensitive to the R group at C_{2}.

In summary, we have examined a number of chiral oxazolidines $\mathbf{1 a}-\mathbf{j}$ and $\mathbf{2 a - g}$ possessing an indole moiety as promoters in the enantioselective addition of $\mathrm{Et}_{2} \mathrm{Zn}$ to benzaldehyde and found that substituents on both C_{2} and C_{5} positions of the oxazolidine ring significantly influence the asymmetric induction. Based on these results, we propose a transition state $\mathbf{5}$ for catalysis by $\mathbf{1 a - e}, \mathbf{g}-\mathbf{i}$, featuring the coordination of both oxygen and nitrogen atoms of the oxazolidine with the zinc species. Our finding will encourage further study on the use of readily available chiral oxazolidines ${ }^{10}$ in asymmetric catalysis.

3. Experimental section

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker ARX 300 or AM-400 NMR instrument. IR spectra were taken on a Bio-Rad FTS-IR spectrophotometer. Mass spectra (MS) were measured on a Finnigan TSQ 7000 mass spectrometer. High resolution mass spectra (HRMS) were measured by a VG Autospec mass spectrometer under FAB^{+}conditions. Elemental analysis was performed on a Model 1106 instrument. Optical rotations were recorded on a Perkin-Elmer 241 polarimeter. All reactions were

5

for catalysts 1a-e, g-i

(S) -4
for catalysts 2a-g

Fig. 3.
carried out under a nitrogen atmosphere and monitored by thin-layer chromatography on 0.25 mm E. Merck silica gel plates (60 F-254) using UV light, or 7% ethanolic phosphomolybdic acid and heating as the visualizing methods. E. Merck silica gel 60 (particle size $0.040-0.063 \mathrm{~mm}$) was used for flash column chromatography. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous materials. Abrine was isolated from the extract of the seeds of Abrus precatorius collected in the Yunnan Province of China. ${ }^{5}$ Amino alcohols 3a and 3b were synthesized from abrine according to the known procedure. ${ }^{4 \mathrm{a}} \mathrm{Et}_{2} \mathrm{Zn}(1.0 \mathrm{M}$ in hexanes) and other reagents were obtained commercially and used as received.

3.1. Oxazolidines $\mathbf{1 a - j}$ and $\mathbf{2 a - g}$; general procedure

Method A: A solution of $\mathbf{3 a}(128 \mathrm{mg}, 0.33 \mathrm{mmol})$ and the aldehyde $(0.50 \mathrm{mmol})$ in dry $\mathrm{PhH}(10 \mathrm{~mL})$ in the presence of powdered $4 \AA \mathrm{MS}$ was heated at refluxing temperature until the TLC analysis indicated the completion of the reaction (see Table 1 for reaction times).

Method B: A solution of $\mathbf{3 a}$ or $\mathbf{3 b}(128 \mathrm{mg}, 0.33 \mathrm{mmol})$ and the aldehyde $(0.50 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ in the presence of powdered $4 \AA \mathrm{MS}$ was stirred at room temperature until TLC analysis indicated the completion of the reaction (see Table 1 for reaction times). The reaction mixture was filtered through a pad of Celite with washing by diethyl ether. The combined organic solution was evaporated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 14% EtOAc in hexane) to give the oxazolidines. The yields and specific rotation data are summarized in Table 1.

3.1.1. (2S,4S)-4-(Indol-3-yl-methyl)-2,3-dimethyl-5,5-di(p-tolyl)-1,3-oxazolidine 1a

Pale yellow foam; IR (KBr) 3420 (br), 2920, 1455, 1350, 820, $750 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{q}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,140.5,136.7,136.5,136.2,128.6,128.4$, $128.1,127.5,126.9,122.7,121.8,119.2,119.0,113.1,111.1,91.5,88.1,73.8,37.8,29.0,21.0,20.9$, 19.0; MS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) $411\left(\mathrm{M}^{+}+1,100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 411.2436. Found: 411.2484. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 81.91$; H, 7.37; N, 6.82. Found: C, 81.79; H, 7.55; N, 6.50.

3.1.2. (2S,4S)-2-Ethyl-4-(indol-3-yl-methyl)-3-methyl-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1 b}$

Pale yellow foam; $\operatorname{IR}(\mathrm{KBr}) 3395,2920,1450,1340,1230,1180,1010,810,740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.61$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dd, $J=7.0,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ ($\mathrm{s}, 3 \mathrm{H}$), $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,140.6,136.5,136.4,136.2,128.7,128.2,128.0,127.6,126.9,122.7,121.8,119.2,119.0,113.5$, 111.0, $95.9,87.8,73.4,38.7,29.4,26.5,21.0,20.9,9.1 ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 425.2593. Found: 425.2644. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}$: C, 82.04; H, 7.60; N, 6.60. Found: C, 82.13; H, 7.65; N, 6.44.

3.1.3. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-propyl-5,5-di(p-tolyl)-1,3-oxazolidine 1c

Pale yellow foam; IR (KBr) 3400, 2920, 1450, 1350, 1180, 1020, 810, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.59(\mathrm{~s}$, $1 \mathrm{H}), 3.87(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.17(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,140.5$, $136.5,136.4,136.2,128.7,128.2,128.1,127.4,126.9,122.8,121.8,119.2,119.0,113.6,111.0,95.0$, $87.8,73.5,38.6,35.7,29.3,21.0,20.9,18.3,14.4 ; \mathrm{MS}\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) $439\left(\mathrm{M}^{+}+1,100\right)$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 439.2749. Found: 439.2720. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$: C, 82.15; H, 7.81; N, 6.39. Found: C, 82.03; H, 7.99; N, 6.22.

3.1.4. (2S,4S)-2-Butyl-4-(indol-3-yl-methyl)-3-methyl-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1 d}$

Pale yellow foam; $\operatorname{IR}(\mathrm{KBr}) 3400,2920,1450,1350,1180,1020,820,745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.05(\mathrm{~m}, 10 \mathrm{H}), 6.58(\mathrm{~s}$, $1 \mathrm{H}), 3.86(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.32$ ($\mathrm{s}, 3 \mathrm{H}$), $2.18(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9$, $140.5,136.5,136.4,136.2,128.7,128.2,128.1,127.6,126.8,122.8,121.8,119.1,118.9,113.3,111.0$, $95.1,87.8,73.5,38.6,33.3,29.3,27.2,23.0,21.0,20.9,14.1 ; \mathrm{MS}\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) 453 $\left(\mathrm{M}^{+}+1,100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 453.2906. Found: 453.2924. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 82.26$; H, 8.02; N, 6.19. Found: C, 82.15; H, 8.06; N, 6.04.

3.1.5. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-pentyl-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1} \boldsymbol{e}$

Pale yellow foam; IR (KBr) 3400, 2910, 2840, 1440, 1340, 1320, 1180, 1005, 805, $730 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.07(\mathrm{~m}$, $10 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.96(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,140.6,136.5,136.4,136.3,128.7,128.2,128.0,127.6,126.7,122.8,121.7,119.1,118.9,113.4$,
111.0, 95.2, 87.9, 73.4, 38.6, 33.7, 32.1, 29.7, 29.4, 24.6, 22.7, 20.9, 14.0; HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 467.3062. Found: 467.3101.

3.1.6. (2S,4S)-4-(Indol-3-yl-methyl)-2-isopropyl-3-methyl-5,5-di(p-tolyl)-1,3-oxazolidine $1 f$

Pale yellow foam; IR (KBr) 3395, 2940, 1445, 1340, 1180, 810, $740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.08(\mathrm{~m}, 11 \mathrm{H}), 6.73(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}$, $J=8.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=14.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}$ of septet, $J=3.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,140.6,136.4,136.1,136.0,128.8,128.3,127.7$, 127.2, 126.7, 122.7, 121.6, 119.0, 118.8, 113.9, 111.0, 99.0, 87.6, 72.4, 40.6, 31.7, 29.8, 21.0, 20.9, 18.7, 16.5; MS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) $439\left(\mathrm{M}^{+}+1,100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 439.2749. Found: 439.2721. Anal. calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}$: C, 82.15; H, 7.81; N, 6.39. Found: C, 82.11; H, 7.93; N, 6.18.
3.1.7. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-(2-methylpropyl)-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1 g}$

Pale yellow foam; IR (KBr) 3400, 2940, 1450, 1340, 1180, 1010, 810, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.60(\mathrm{~d}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.34$ (s, 3H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,140.6,136.5,136.4,136.2,128.7$, $128.2,128.1,127.6,126.8,122.7,121.8,119.2,119.0,113.4,111.0,93.9,88.0,73.4,42.9,38.5,29.4$, 25.2, 23.8, 22.6, 21.0, 20.9; HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 453.2906. Found: 453.2978. Anal. calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 82.26 ; \mathrm{H}, 8.02$; N, 6.19. Found: C, 82.25; H, 8.06; N, 6.06.

3.1.8. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-(2,2-dimethylpropyl)-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1 h}$

 Pale yellow foam; IR (KBr) 3430, 2960, 1420, 1320, 840, $700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.06(\mathrm{~m}, 10 \mathrm{H}), 6.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (s, 3H), 2.17 (s, 3H), 1.85 (dd, $J=14.3,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,140.8,136.4,136.3,136.0,128.7,128.2,128.1,127.7,126.9,122.7,121.8$, $119.2,119.0,113.4,111.0,93.1,88.5,72.7,47.3,38.3,30.2,29.8,29.5,21.0,20.9 ;$ HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right): 467.3062$. Found: 467.3129. Anal. calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 82.36 ; \mathrm{H}, 8.21 ; \mathrm{N}$, 6.00. Found: C, 82.20; H, 8.28; N, 5.90.3.1.9. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-(2-phenylethyl)-5,5-di(p-tolyl)-1,3-oxazolidine $\mathbf{1 i}$

Pale yellow foam; IR (KBr) 3400, 2940, 1455, 1355, 830, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.89(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.07(\mathrm{~m}, 16 \mathrm{H}), 6.62(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=6.3,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}$, $3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.04(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8,142.5,140.5$, $136.6,136.5,136.2,128.7,128.5,128.3,128.2,128.0,127.5,126.9,125.7,122.7,121.8,119.2,118.9$, $113.4,111.0,94.3,88.1,73.2,38.7,35.3,31.0,29.5,21.0,20.9 ; \mathrm{MS}\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) 501 $\left(\mathrm{M}^{+}+1,100\right)$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 501.2906. Found: 501.2976. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 83.96 ; \mathrm{H}, 7.25$; N, 5.60. Found: C, 83.77; H, 7.39; N, 5.43.
3.1.10. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-phenyl-5,5-di(p-tolyl)-1,3-oxazolidine 1 j

Pale yellow foam; IR (KBr) 3410, 2940, 2870, 1670, 1460, 1355, 830, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.07(\mathrm{~m}, 14 \mathrm{H}), 6.59(\mathrm{~d}$, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (ABX, $J=11.1,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6,140.4,139.0,136.6,136.5,136.2,129.0$, $128.8,128.4,128.4,128.2,128.2,127.5,127.1,122.8,121.8,119.2,118.9,113.2,111.1,96.4,88.9,72.9$, 37.8, 29.4, 21.0, 20.9; MS $\left(\mathrm{CI}^{+}\right) \mathrm{m} / \mathrm{z}$ (relative intensity) $473\left(\mathrm{M}^{+}+1,50\right), 211(100)$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right): 473.2593$. Found: 473.2611. Anal. calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}: \mathrm{C}, 83.86 ; \mathrm{H}, 6.82 ; \mathrm{N}$, 5.93. Found: C, 83.79; H, 6.98; N, 5.71.

3.1.11. (2S,4S)-4-(Indol-3-yl-methyl)-2,3-dimethyl-5,5-di(o-tolyl)-1,3-oxazolidine $2 a$

Pale yellow foam; IR (KBr) 3250, 2925, 1457, 1341, 1234, 1140, 1071, 750, $735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.18-6.99(\mathrm{~m}, 9 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{q}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=11.3$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.8,139.1,136.4,133.2,131.6,128.5,127.6,127.2,125.1,124.0,121.6,119.2,118.7$, 111.1, $90.3,89.5,67.6,38.4,29.7,21.8,14.1$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right): 411.2436$. Found: 411.2347.

3.1.12. (2S,4S)-2-Ethyl-4-(indol-3-yl-methyl)-3-methyl-5,5-di(o-tolyl)-1,3-oxazolidine 2b

Pale yellow foam; $\operatorname{IR}(\mathrm{KBr}) 3424,2967,2930,1484,1456,1353,1230,1068,1014,751,742 \mathrm{~cm}^{-1}$;
${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 9 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.36 \mathrm{dd}, J=12.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 2 \mathrm{H})$, 1.08 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,139.1,136.3,134.8,133.1,131.4,129.0$, $128.3,127.9,127.4,126.9,124.9,123.7,123.0,121.5,119.0,118.8,114.2,111.0,94.4,89.8,66.8,38.9$, 31.2, 27.2, 22.3, 21.7, 8.7; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 425.2593. Found: 425.2681.

3.1.13. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-propyl-5,5-di(o-tolyl)-1,3-oxazolidine $2 \boldsymbol{c}$

Pale yellow foam; IR (KBr) 3421, 3259, 2959, 1457, 1356, 1233, 1137, 1016, 754, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22-7.00(\mathrm{~m}, 9 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (dd, $J=5.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=12.1,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.00(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,139.1,136.3,134.8,133.0,131.4,129.0,128.4$, $127.9,127.4,126.9,124.9,123.7,123.0,121.5,119.0,118.8,114.2,111.0,93.6,89.7,66.7,38.9,36.9$, 31.2, 22.3, 21.6, 18.0, 14.4; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 439.2749. Found: 439.2809.

3.1.14. (2S,4S)-2-Butyl-4-(indol-3-yl-methyl)-3-methyl-5,5-di(0-tolyl)-1,3-oxazolidine 2d

Pale yellow foam; IR (KBr) 3226, 2954, 2928, 1458, 1353, 1234, 1131, 1017, 754, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 9 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (dd, $J=11.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.32(\mathrm{~m}, 6 \mathrm{H}), 0.95(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.3,139.1,136.3,133.3,131.6,128.4,127.7,127.2$, $125.1,123.9,121.6,119.2,118.4,111.2,94.0,90.1,67.5,38.9,33.5,27.1,22.8,22.5,21.6,14.1$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 453.2906. Found: 453.2885.

3.1.15. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-pentyl-5,5-di(o-tolyl)-1,3-oxazolidine $2 \boldsymbol{e}$

Pale yellow foam; $\operatorname{IR}(\mathrm{KBr}) 3221,2953,2928,1458,1353,1129,1017,754,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 9 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=6.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}$, $J=11.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.32(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.0,139.1,136.3,135.0,133.1,131.4,129.0,128.4,127.7$, $127.4,126.7,124.9,123.7,122.9,121.5,119.0,118.9,114.3,111.0,93.8,89.8,66.9,38.9,34.4,31.2$, 24.4, 23.0, 22.3, 21.7, 14.2; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 467.3062. Found: 467.3066.

3.1.16. (2S,4S)-4-(Indol-3-yl-methyl)-2-isopropyl-3-methyl-5,5-di(o-tolyl)-1,3-oxazolidine $2 f$

Pale yellow foam; IR (KBr) 3417, 3392, 2960, 2927, 1456, 1357, 1230, 1054, 1023, $746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.00(\mathrm{~m}$, $9 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.19(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (s, 3H), $2.06(\mathrm{~s}, 6 \mathrm{H}), 2.00-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.9,139.2,136.3,134.6,133.2,131.4,129.1,128.2,127.8,127.5,127.0,125.0,123.7$, $123.2,121.5,119.1,118.6,114.1,111.1,98.0,89.4,66.8,40.2,31.7,30.8,29.7,22.3,21.5,18.7$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 439.2749. Found: 439.2685.

3.1.17. (2S,4S)-4-(Indol-3-yl-methyl)-3-methyl-2-(2-methylpropyl)-5,5-di(o-tolyl)-1,3-oxazolidine $2 g$

Pale yellow foam; IR (KBr) 3428, 2954, 2928, 1456, 1355, 1232, 1014, $745 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25-7.00(\mathrm{~m}, 9 \mathrm{H}), 6.87$ (br s, 1H), 4.44 (br s, 1H), 3.70 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.40 (br s, 1H), 2.25 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 6 \mathrm{H}), 2.00-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,139.0,136.3,133.2,131.5,128.8,128.5,127.5,127.0$, $125.0,123.8,123.3,121.6,119.1,118.7,111.0,92.9,90.0,67.0,43.9,38.8,29.7,25.1,23.7,22.7,22.4$, 21.6; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}\left(\mathrm{M}^{+}+1\right)$: 453.2906. Found: 453.2948.

3.2. A typical procedure for the catalytic addition of $E t_{2} \mathrm{Zn}$ to bezaldehyde

To a solution of the chiral oxazolidine $\mathbf{1}$ or $2(0.18 \mathrm{mmol})$ in dry $\mathrm{PhMe}(8 \mathrm{~mL})$ under a nitrogen atmosphere cooled in an ice-water bath (ca. $0^{\circ} \mathrm{C}$) was added a solution of $\mathrm{Et}_{2} \mathrm{Zn}(4 \mathrm{~mL}, 1 \mathrm{M}$ in hexanes) via a syringe. After stirring for 10 min , freshly distilled benzaldehyde $(0.20 \mathrm{~mL}, 1.80 \mathrm{mmol})$ was added into the mixture via another syringe. The resultant mixture was allowed to warm up to room temperature and stirring was continued for $94-100 \mathrm{~h}$. The reaction mixture was cooled in an ice-water bath and quenched with $5 \% \mathrm{HCl}$ aqueous solution. The mixture was extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$), washed with brine, dried over anhydrous MgSO_{4}, and condensed under reduced pressure. The residue was purified by flash column chromatography (silica gel, $10 \% \mathrm{EtOAc}$ in hexane) to give chiral 1-phenyl-1-propanol (4). The yields and enantiomeric excess data are summarized in Table 2.

Acknowledgements

This work was supported by a Young Investigator Grant of The Science and Technology Commission of Yunnan Province of China to H.-J. Zhu, The National Foundation Grant for Outstanding Young Scientists to X.-J. Hao, and the Department of Chemistry, HKUST.

References

1. (a) Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823. (b) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071. For reviews, see: (c) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49. (d) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833. (e) Oguni, N. Kikan Kagaku Sosetsu 1993, No. 19, 143.
2. (a) Dosa, P. I.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 445. (b) Ramón, D. J.; Yus, M. Tetrahedron Lett. 1998, 39, 1239.
3. Phosphinoylimines, see: (a) Soai, K.; Suzuki, T.; Shono, T. J. Chem. Soc., Chem. Commun. 1994, 317. (b) Suzuki, T.; Narisada, N.; Shibata, T.; Soai, K. Tetrahedron: Asymmetry 1996, 7, 2519. (c) Suzuki, T.; Shibata, T.; Soai, K.; J. Chem. Soc., Perkin Trans. 1 1997, 2757. (d) Hayase, T.; Osanai, S.; Shibata, T.; Soai, K. Heterocycles 1998, 48, 139. (e) Andersson, P. G.; Guijarro, D.; Tanner, D. J. Org. Chem. 1997, 62, 7364. 3,4-Dihydroisoquinoline N-oxides, see: (f) Ukaji, Y.; Kenmoku, Y.; Inomata, K. Tetrahedron: Asymmetry 1996, 7, 53.
4. (a) Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron: Asymmetry 1995, 6, 1857. (b) Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron: Asymmetry 1996, 7, 1245. (c) Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron Lett. 1996, 37, 5971.
5. Dictionary of Organic Compounds, 5th edn; Buckingham, J., Ed.; Chapman and Hall: New York, 1982; p. 4084.
6. (R)-1-Phenyl-1-propanol, see: Soai, K.; Watanabe, M. Tetrahedron: Asymmetry 1991, 2, 97.
7. Chiral piperazines: (a) Soai, K.; Niwa, S.; Yamada, Y.; Inoue, H. Tetrahedron Lett. 1987, 28, 4841. (b) Niwa, S.; Soai, K. J. Chem. Soc., Perkin Trans. 1 1991, 2717. (c) Shono, T.; Kise, N.; Shirakawa, E.; Matsumoto, H.; Okazaki, E. J. Org. Chem. 1991, 56, 3063. (d) Fuji, K.; Tanaka, K.; Miyamoto, H. Chem. Pharm. Bull. 1993, 41, 1557.
8. Chiral pyrrolidine derivatives: (a) Chelucci, G.; Falorni, M.; Giacomelli, G. Tetrahedron: Asymmetry 1990, 1, 843. (b) Chelucci, G.; Conti, S.; Falorni, M.; Giacomelli, G. Tetrahedron 1991, 47, 8251. (c) Asami, M.; Inoue, S. Bull. Chem. Soc. Jpn 1997, 70, 1687.
9. Other chiral diamines: (a) Rosini, C.; Franzini, L.; Iuliano, A.; Pini, D.; Salvadori, P. Tetrahedron: Asymmetry 1991, 2, 363. (b) Pini, D.; Mastantuono, A.; Uccello-Barretta, G.; Iuliano, A.; Salvadori, P. Tetrahedron 1993, 49, 9613. (c) Eilers, J.; Wilken, J.; Martens, J. Tetrahedron: Asymmetry 1996, 7, 2343.
10. Zinc amides of chiral oxazolidines, see: Prasad, K. R. K.; Joshi, N. N. J. Org. Chem. 1997, 62, 3770.
11. Reports against the formation of zinc amides from secondary amines and $\mathrm{Et}_{2} \mathrm{Zn}$, see: (a) Tanaka, K.; Oshio, H.; Suzuki, H. J. Chem. Soc., Chem. Commun. 1989, 1700. (b) Ref. 9b.
12. The $\mathrm{p} K_{\mathrm{a}}$ values in DMSO of 44 and 21.0 were reported for pyrrolidine and indole, respectively, see: Bordwell, F. G.; Drucker, G. E.; Fried, H. E. J. Org. Chem. 1981, 46, 632.

[^0]: * Corresponding author. E-mail: chdai@ust.hk

