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Abstract: Half esters (R)-5 of 1,1'-binaphthalene-8,8'-diol undergo 1,4-addition of lithium dialkyl 
cuprates followed by formal 1,2-addition to give ~-substituted ketones (S)-6 or (S)-7 with high 
enantioselectivity (96 ~ 100% ee). A brief discussion of the mechanism is presented. 
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Optically active 1, l '-binaphthalene-2,2'-diol (1) has been extensively used to provide a chiral environ- 

ment in asymmetric synthesesl,  2 and in molecular recognitions. 3 However, the corresponding 8,8'-diol 2 has 

received little attention. 4 Recently, we reported a one-step synthesis of the optically active ketone (R)-3 through 

successive 1,4- and 1,2-addition of Me2CuLi to the (S)-binaphthyl ester 4. 5 Although we were able to obtain an 

84% yield at 87% ee, this is still inadequate from a preparative point of view. We report here that the replace- 

ment of a chiral auxiliary from 1,1'-binaphthalene-2,2'-diol (1) to 1,1'-binaphthalene-8,8'-diol (2) remarkably 

increases the ee. 
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(x,~-Unsaturated esters (R)-5 were easily prepared by the condensation of (R)-1,1'-binaphthalene-8,8'- 

diol (2) 6 with the corresponding acids in the presence of 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hy- 

drochloride and a catalytic amount of DMAP. Conjugate addition of Me2CuLi to the ester (R)-5a gave (S)-6a in 
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Scheme 1. 
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Table 1. Preparation of  Ketones 6 and 7 from 5. 

ester a reaction conditions product a yield, %b % ee c 

reagent temp, °C time, h 

5a Me2CuLi -20 --> r.t. 3.5 6a d 85 98 

5b  Me2CuLi -20 --> r.t. 3 6b 82 97 

5e Me2CuLi -20 --4 r.t. 4 6c e 72 97 

5d  Me2CuLi -20 --> r.t. 3 6(! f 86 100g 

5e Me2CuLi -20 -~  r.t. 3.5 6e 91 98 

5f  Me2CuLi -20 --> r.t. 3 (if 80 97 h 

5g Me2CuLi -20 --> r.t. 3 6g i 83 100g 

5h  Me2CuLi -20 --> r.t. 8 6hi 73 100g ,h 

5a n-Bu2CuLi -78 --> r.t. 2.5 7a k 69 97 

5b  n-Bu2CuLi -78 --> r.t. 8.5 7b 54 99 

5c n-Bu2CuLi -78 ---> r.t. 3 7c 68 96 

aAil new compounds gave satisfactory spectral data and elementary analysis and/or high resolution 

mass spectrum, blsolated yield. CDetermined by HPLC using a chiral column (Daicel Chiralcel OJ). 

dRef. 8. eRef. 9. fCho, C. S.; Tanabe, K.; Uemura, S. Tetrahedron Lett. 1994, 35, 1275. gAnother 

enantiomer was not detected, hDaicel Chiralcel OD was used. ipoirier, J.-M.; Dujardin, G. Hetero- 

cycles 1987, 25, 399. JTamaru, Y.; Yamada, Y.; Yoshida, Z. J. Org. Chem. 1978, 43 3396. kJensen, 

S. R.; Kristiansen, A.-M.; Petersen, J. M. Acta Chem. Scand. 1970, 24, 2641. 
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85% yield and 98% ee (Scheme 1). 7 Results for other esters 5 are listed in Table 1. The absolute configuration 

of 6a was based on a comparison with the previously reported value 8 for the specific rotation. The CD spectra of 

6a and 7a indicated that they had the same absolute configuration. We 

assume an S-configuration for other products 6 and 7, since these 

Michael additions should proceed via the same type of mechanism. 9 

Extremely high ee of greater than 96% was obtained in every 

case examined. A lower chemical yield was observed for the addition 

of n-Bu2CuLi, but a high ee was retained. Temperature control was 

crucial for successive 1,4- and 1,2-addition of the reagent. Unreacted 

OO" O.¢ Ph 
0 Me 

8 

(R)-Sa was recovered quantitatively at -78 °C and the 1,4-addition product 8 was obtained in 68% yield along 

with a small amount of (S)-6a at -20 °C. This indicates that elimination of the 1,1-binaphthalene-8,8'-diol moiety 

from intermediate 9 to give another intermediate 10 (Scheme 2) starts at around -20 °C. Increasing the reaction 

temperature from -20 °C to room temperature over several hours generally gave satisfactory results. 

Scheme 2. 
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It is generally accepted that the most stable conformation for an enoate is s-cis with respect to the carbo- 

nyl group and the double bond. 10 Molecular mechanics calculations I ! indicated that 5a also takes the s-cis form, 

as shown in Figure 1. Parallel alignment of the tx,13-unsaturated group and another naphthyl ring is quite reason- 

able considering steric interaction and/~-stacking. This model clearly shows that the re-face of the I~-carbon to 

the carbonyl group is completely blocked by another naphthyl ring at the peri-position. Interestingly, the alkyl 

Figure 1. The most stable conformation of 5a 
calculated by MacroModel/AMBER*. 

Li-'" ~ .. 

Figure 2. Chelation model for the intramolecular 
transfer of methyl group affording (S)-6a. 

group must transfer from the highly hindered re-face of the I]-carbon, assuming that the original s-cis conforma- 

tion of 5a is retained throughout the reaction to yield (S)-ketones 6 and 7. A transition model is proposed to 

explain this intriguing result (Figure 2). Complexation of the reagent with the oxyanion at the 8'-position is 

crucial for the intramolecular delivery of the alkyl group to the ~-carbon. 5 Cuprate-/t-complexation of the enoate 
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to the copper center is reportedly the first event in the addition of Me2CuLi to methyl trans-cinnamate, according 

to NMR studies. 12 These results provide an efficient method for syntheses of ketones with an aromatic substitu- 

ent at the 13-position with high enantiomeric purity. Studies of the detailed mechanism, including the function of 

the 8'-hydroxy group, and extension of this method to aliphatic enoates are under way. 
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