Chiral Ligands Derived from Abrine. 3. Asymmetric Pictet-Spengler Reaction of Abrine Methyl Ester and Synthesis of Chiral 1,2,3,4-Tetrahydro- β-carbolines as Promoters in Addition of Diethylzinc toward Aromatic Aldehydes

Wei-Min Dai,*a Hua Jie Zhu, ${ }^{\text {å̊ }}$ and Xiao-Jiang Hao*b
${ }^{\text {a }}$ Department of Chemistry, The Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong
and
${ }^{\text {b }}$ Kunming Institute of Botany, The Academy of Sciences of China, Heilongtan, Kunming 650204, Yunnan, China

Abstract

Asymmetric Pictet-Spengler reaction of a number of aldehydes with Abrine methyl ester (1) was performed at room temperature to furnish mainly $\mathbf{3}$ and high ee was obtained in enantioselective addition of $\mathrm{Et}_{2} \mathrm{Zn}$ with PhCHO catalyzed by chiral 1,2,3,4-tetrahydro- β-carboline derivatives 5 synthesized from 3. Copyright © 1996 Elsevier Science Ltd

The Pictet-Spengler reaction ${ }^{1}$ has played an important role in the syntheses of isoquinoline ${ }^{2}$ and β carboline ${ }^{3}$ alkaloids. Starting from chiral N_{b}-benzyltryptophan esters, optically active trans-1,3-disubstituted-$1,2,3,4$-tetrahydro- β-carboline derivatives could be obtained as the major product through a stereoselective Pictet-Spengler reaction. ${ }^{4}$ Steric interaction between the N_{b}-benzyl and C(3) carboalkoxy groups in the transition state was considered as the cause of the observed stereoselectivity. By changing the N_{b}-benzyl to $N_{\mathrm{b}^{-}}$ diphenylmethyl analogs, complete trans selectivity could be achieved even for acetaldehyde. ${ }^{4 d}$ Very recently asymmetric Pictet-Spengler reaction using chiral auxiliary groups has also been developed to give diastereomeric excess up to $97 \% .{ }^{5} \mathrm{We}$ have initiated a research program for enantioselective reactions utilizing chiral ligands derived from the alkaloid Abrine [(S)-N-methyltryptophan]. 6 A number of indole-containing chiral β-amino alcohols ${ }^{7 \mathrm{a}}$ and oxazolidines ${ }^{7 \mathrm{~b}}$ were synthesized and their catalytic potency for the addition of diethylzinc toward aromatic aldehydes was examined. We report here the synthesis of chiral N_{b}-methyl-$1,2,3,4$-tetrahydro- β-carbolines 3 from Abrine methyl ester (1,Scheme 1) and the enantioselective addition of $\mathrm{Et}_{2} \mathrm{Zn}$ with aromatic aldehydes catalyzed by the chiral hydroxy-containing 1,2,3,4-tetrahydro- β-carbolines 5.

Scheme 1

1

3 (trans)

4 (cis)

The Pictet-Spengler condensation of N_{b}-benzyltryptophan esters with aldehydes was usually performed in refluxing benzene or toluene ${ }^{4 \mathrm{a}-e}$ with azeotropic removal of water by using a Dean-Stark trap. ${ }^{4 \mathrm{~b}}$ For bulky aldehydes, an acid such as trifluoroacetic acid (TFA) was used to facilitate the ring formation. ${ }^{4 d, \mathrm{e}}$ In order to have a simple operational procedure and to avoid decomposition of the materials at higher temperature, we chose to conduct the reaction in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt (Scheme 1). As shown in Table $1,{ }^{8}$ it was found that $4 \AA$ MS alone did not give the desired product from $\mathbf{1}$ and $\mathbf{2 b}$ (entry 2). TFA promoted the Pictet-Spengler reaction of $\mathbf{1}$ with PhCHO in excellent yield (entry 10). However, the yields decreased significantly when bulky aldehydes were used (entries 5 and 7). Finally, carrying out the reaction in the presence of a catalytic amount of TFA and MS [Method C] in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt for overnight provided an efficient synthesis of N_{b}-methyl-1,2,3,4-tetrahydro-β-carbolines 3 and 4. These results suggest that both acid catalysis and removal of water from the reaction mixture are essential for performing the Pictet-Spengler reaction at rt. It is known ${ }^{4 \mathrm{~d}}$ that the bulkiness of the N_{b}-alkyl group affects the diastereomeric ratio of the product. We expected that in our N_{b}-methyl series the diastereomeric ratio of $\mathbf{3 : 4}$ will be lower compared to the N_{b}-benzyl series of compounds. However, it was realized that the ratio $\mathbf{3 : 4}$ could be increased from 72:28 (2a, entry 1) to $90: 10$ ($\mathbf{2 h}$, entry 11) with increased size of the R group in $\mathbf{2}$. Moreover, it was confirmed that the ratio of $\mathbf{3 : 4}$ given in Table 1 is the thermodynamic ratio since no change was noted by treating the isolated product mixture again with TFA at rt. ${ }^{4 e}$

Table 1. Asymmetric Pictet-Spengler Reaction of Abrine Methyl Ester at it.

Entry	$\mathrm{RCHO}(2)^{\text {a }}$	Method ${ }^{\text {b }}$	Yield (\%) ${ }^{\text {c }}$	3:4 (ratio) ${ }^{f}$
1	2a: $\mathrm{F}=\mathrm{Et}$	C [TFA (0.25 eq)+MS]	$61.6^{\text {d }}$	3a:4a (72:28)
2	2b: $\mathbf{R}=n-\mathrm{Pr}$	A [MS only, 3 days]	--...e	----e
3	$\underline{\text { 2b }}$	C	$58.9{ }^{\text {d }}$	3b:4b (76:24)
4	2c: $\mathrm{R}=i-\mathrm{Pr}$	C	72.4	3c:4c (79:21)
5	2d: $\mathrm{R}=i-\mathrm{PrCH} 2$	B [TFA (0.25 eq) only]	51.4	3d:4d (80:20)
6	2d	C	85.5	3d:4d (80:20)
7	2e: $\mathrm{R}=t$ - BuCH_{2}	B	17.7	3e:4e (87:13)
8	2e	C	87.5	3e:4e (87:13)
9	2f: R = c-Hexyl	C	$48.5{ }^{\text {d }}$	3f:4f (83:17)
10	2g: $\mathrm{R}=\mathrm{Ph}$	B	83.4	3g:4g (82:18)
11	2h: $\mathrm{R}=3,5-(\mathrm{MeO})_{2}-\mathrm{Ph}$	C	88.2	3h:4h (90:10)
12	2i: R = 1-naphty	C	83.3	3i:4i (88:12)

${ }^{a_{1}} .5$ equivalent of RCHO was used. ${ }^{b} T \mathrm{TFA}=$ trifluoroacetic acid; $\mathrm{MS}=$ powdered $4 \AA$ molecular sieves. ${ }^{\circ}$ Yield is calculated based on the isolated homogenous material. ${ }^{\alpha}$ Yield is not optimized. ${ }^{e} \mathrm{~A}$ very complex mixture was obtained. 'Determined by ${ }^{1} \mathrm{H}$ NMR on a 300 MHz instrument.

Next, the inseparable mixture of $\mathbf{3 : 4}$ (except for 3 e which was isolated in diastereomeric pure form) was treated with excess amount of PhMgCl or EtMgBr at rt to form the tertiary alcohol $\mathbf{5 a - g}{ }^{8}$ in $50-70 \%$ yield. Fortunately, the minor product generated from 4 was separated by flash column chromatographic purification
over silica gel. With compounds $\mathbf{5 a - g}$ in hand, enantioselective addition of $\mathrm{Et}_{2} \mathrm{Zn}$ toward aromatic aldehydes ${ }^{9}$ was investigated by using 5 or 10% of $5 \mathrm{a}-\mathrm{g}$ as the catalyst. Table 2 shows these results. It is interesting to note that $\mathbf{5 a}$ bearing a diphenylhydroxymethyl group induced lower enantiomeric excess (ee) than the corresponding diethylhydroxymethyl analog $\mathbf{5 b}(24.1 \%$ vs. 47.9%, entries 1 and 2$){ }^{7 a}$ In general, the catalysts $\mathbf{5 b}, \mathbf{c}$ having an aromatic group at $\mathbf{C}(1)$ are poor catalysts ($<60 \%$ ee) compared with $\mathbf{5 d}$ possessing a cyclohexyl group at $\mathrm{C}(1)(82.4 \%$ ee, entry 5). It was further demonstrated that a bulky alkyl side chain attached at $\mathrm{C}(1)$ of the catalyst is critical for achieving high enantioselectivity (up to 97.6% ee, entries 6-8) of the ethylation reaction.

5b: $\mathrm{R}=\mathrm{Ph} ; \quad$ 5c: $\mathrm{R}=3,5-(\mathrm{MeO})_{2}-\mathrm{Ph}$;
5d: $\mathrm{R}=c$-Hexyl; $\quad 5 \mathrm{e}: \mathbf{R}=n$ - Pr ;
5f: $\mathrm{R}=i-\mathrm{PrCH}_{2} ; \quad \mathbf{5 g}: \mathbf{R}=t \cdot \mathrm{BuCH}_{2}$

Table 2. Enantioselective Addition of $E t_{2} \mathrm{Zn}$ toward Aromatic Aldehydes in PhMe at rt .

Entry	ArCHO	Cat $^{* a}$	Reation Time	$\mathrm{ArC}^{*} \mathrm{H}(\mathrm{OH}) \mathrm{Et}^{c}$	ee $^{d}{ }^{d}$	Configuration e
$\mathbf{1}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$\mathbf{5 a}$				
2	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	$\mathbf{5} \mathbf{b}^{b}$	24 h	71.3%	24.1	R
3	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 b}$	46 h	92.7%	47.9	R
4	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 c}$	46 h	86.9%	52.9	R
5	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 d}$	46 h	93.7%	51.9	R
6	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 e}$	46 h	86.6%	82.4	R
7	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 f}$	46 h	88.4%	85.2	R
8	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$	$\mathbf{5 g}$	46 h	92.5%	97.6	R

$a_{5} \%$ Cat * was used. ${ }^{b_{1}} 0 \%$ Cat * was used. ${ }^{\circ}$ Yield is based on the isolated homogenous material.
${ }^{\circ}$ Determined by HPLC on CHIRALCEL OB column. ${ }^{\text {E Based on the positive rotation sign. See ref. } 10 .}$

In summary, an efficient asymmetric Pictet-Spengler reaction of Abrine methyl ester (1) with a number of aldehydes has been performed at it in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of a catalytic amount of trifluoroacetic acid and $4 \AA$ powdered molecular sieves. The diastereomeric ratio of the products $3: 4$ could be improved by using a bulky aldehyde. The chiral hydroxy-containing trans-1,3-disubstituted-1,2,3,4-tetrahydro- β-carbolines 5 could be synthesized from the asymmetric Pictet-Spengler reaction products $\mathbf{3}$ by reacting with the Grignard reagents. Moreover, compounds 5 exhibit promising catalytic capability for the enantioselective ethylation of aromatic aldehydes with $\mathrm{Et}_{2} \mathrm{Zn}$. This work provides a novel class of 1,2,3,4-tetrahydro- β-carboline-based chiral ligands for this exciting catalytic enantioselective reaction. ${ }^{11}$ Further investigation is under way in our laboratories.

Acknowledgment. This work was supported by a research grant (HKUST203/93E) to W.-M. Dai from Hong Kong Research Grants Council, the Department of Chemistry, HKUST, and a Young Investigator Grant to H. J. Zhu and X.-J. Hao from The Science and Technology Commission of Yunnan Province of China.

References and notes:

§On leave from Kunming Institute of Botany, The Academy of Sciences of China.

1. Pictet-Spengler reaction, see: Mundy, B. P.; Ellerd, M. G. Name Reactions and Reagents in Organic Synthesis; John Wiley \& Sons, Inc.: New York, 1988, p 164.
2. "Isoquinolines" in The Chemistry of Heterocyclic Compounds Greth, G., Ed.; Wiley: New York, 1981, Part I, vol 38.
3. (a) Yoneda, N. Chem. Pharm. Bull. 1965, 13, 1231-1240. (b) Ungemach, F.; Cook, J. M. Heterocycles 1978, 9, 10891119. (c) Soerens, D.; Sandrin, J.; Ungemach, F.; Mokry, P.; Wu, G. S.; Yamanaka, E.; Hutchins, L.; DiPierro, M.; Cook, J. M. J. Org. Chem. 1979, 44, 535-545, (d) Shimizu, M.; Ishikawa, M.; Komoda, Y.; Nakajima, T.; Yamaguchi, K.; Sakai, S. Chem. Pharm. Bull. 1984, 32, 1313-1325. (e) Zhang, L. H.; Cook, J. M. Heterocycles 1988, 27, 13571363, and 2795-2802. (f) Sandrin, J.; Hollinshead, S. P.; Cook, J. M. J. Org. Chem. 1989, 54, 5636-5640. (g) Narayanan, K.; Cook, J. M. J. Org. Chem. 1991, 56, 5733-5736. (h) Fu, X.; Cook, J. M. J. Am. Chem. Soc. 1992, J14, 69106912. (i) Bi, Y.; Zhang, L.-H.; Hamaker, L. K.; Cook, J. M. J. Am. Chem. Soc. 1994, 116, 9027-9041. (j) Martin, S. F.; Clark, C. W.; Corbett, J. W. J. Org. Chem. 1995, 60, 3236-3242.
4. (a) Ungemach, F.; DiPierro, M.; Weber, R.; Cook, J. M. J. Org. Chem. 1981, 46, 164-168. (b) Jawdosiuk, M.; Cook, J. M. J. Org. Chem. 1984, 49, 2699-2701. (c) Zhang, L.-H.; Bi, Y.-Z.; Yu, F.-X.; Menzia, G.; Cook, J. M. Heterocycles 1992, 34, 517-547. (d) Czerwinski, K. M.; Deng, L.; Cook, J. M. Tetrahedron Lett. 1992, 33, 4721-4724. (e) Zhang, P.; Cook, J. M. Tetrahedron Lett. 1995, 36, 6999-7002. Also see: (f) Bailey, P. D.; Collier, I. D.; Hollinshead, S. P.; Moore, M. H.; Morgan, K. M.; Smith, D. I.; Vernon, J. M. J. Chem. Soc., Chem. Commun. 1994, 1559-1560. (g) De la Figuera, N.; Alkorta, I.; García-López, M. T.; Herranz, R.; González-Muñiz, R. Tetrahedron 1995, 51, 7841-7856.
5. (a) Waldmann, H.; Schmidt, G.; Jansen, M.; Geb, J. Tetrahedron 1994, 50, 11865-11884. (b) Soe, T.; Kawate, T.; Fukui, N.; Nakagawa, M. Tetrahedron Lett. 1995, 36, 1857-1860.
6. Abrine was isolated from the seeds of Abrus precatorius collected in Yunnan Province of China. Dictionary of Organic Compounds, 5th ed.; Buckingham, J. Ed.; Champman and Hall: New York, 1982; p 4084.
7. (a) Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron Asymm. 1995, 6, 1857-1860. (b) Dai, W.-M.; Zhu, H. J.; Hao, X.-J. Tetrahedron Asymm. 1996, 7, 1245-1248.
8. All new compounds are characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and HRMS.
9. (a) Oguni, N.; Omi, T. Tetrahedron Lett. 1984, 25, 2823-2824. (b) Kitamura, M.; Suga, S.; Kawai, K.; Noyori, R. J. Am. Chem. Soc. 1986, 108, 6071-6072. (c) Yamakawa, M.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 6327-6335. For reviews, see: (d) Noyori, R.; Kitamura, M. Angew. Chem. Int. Ed. Engl. 1991, 30, 49-69. (e) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833-856. (f) Oguni, N. Kikan Kagaku Sosetsu 1993, No. 19, 143-154.
10. (a) Soai, K.; Watanabe, M. Tetrahedron Asymm. 1991, 2, 97-100. (b) Watanabe, M.; Araki, S.; Butsugan, Y.; Vemura, M. J. Org. Chem. 1991, 56, 2218-2224.
11. Selected recent examples: pyridines, see: a) Soai, K.; Niwa, S.; Hori, H. J. Chem. Soc. Chem. Commun. 1990, 982-983. (b) Ishizaki, M.; Hoshino, O. Tetrahedron Asymm. 1994, 5, 1901-1904. (c) Bolm, C.; Schlingloff, G.; Harms, K. Chem. Ber. 1992, /25, 1191-1203. Pyrimidines, see: (c) Soai, K.; Shibata, T.; Morioka, H.; Choji, K. Nature, 1995, 378, 767768. (d) Shibata, T.; Morioka, H.; Hayase, T.; Choji, K.; Soai, K. J. Am. Chem. Soc. 1996, 118, 471-472. Quinolines, see: (e) Collomb, P.; von Zelewsky, A. Tetrahedron Asymm. 1995, 6, 2903-2904. Pyrazoles and imidazoles, see: (f) Kotsuki, H.; Hayakawa, H.; Wakao, M.; Shimanouchi, T.; Ochi, M. Tetrahedron Asymm. 1995, 6, 2665-2668. Oxazolines, see: (g) Allen, J. V.; Williams, J. M. J. Tetrahedron Asymm. 1994, 5, 277-282.
