Novel ent-kaurane dimers from Isodon rubescens var. rubescens

Quanbin Han, ${ }^{\text {a }}$ Yang Lu, ${ }^{\text {b }}$ Lili Zhang, ${ }^{\text {b }}$ Qitai Zheng ${ }^{\mathrm{b}}$ and Handong Sun ${ }^{\mathrm{a},{ }^{*}}$
${ }^{a}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, PR China
${ }^{\mathrm{b}}$ Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing 100050, PR China

Received 10 October 2003; revised 26 January 2004; accepted 3 February 2004

Abstract

Three novel asymmetric ent-kaurane dimers xindongnins M-O (1-3) were isolated from Isodon rubescens var. rubescens. Their structures were elucidated by spectroscopic methods including 2D NMR analysis. The relative stereochemistry of $\mathbf{1}$ was determined by single crystal X-ray diffraction, which also confirmed the unique linkage of a single carbon-carbon bond between the two subunits of this dimer. A biogenetic pathway was proposed for the formation of these dimers. © 2004 Elsevier Ltd. All rights reserved.

In our continuing phytochemical investigation of Isodon rubescens complex, ${ }^{\text {1a-f }}$ we examined, with the aid of analytical and preparative HPLC, the aqueous acetone extract of the leaves of I. rubescens var. rubescens collected in Shangcheng Prefecture, Henan Province of China, ${ }^{2}$ as a result, three novel asymmetric ent-kaurane dimers were isolated, together with two known compounds melissoidesin $G(4)^{3}$ and xingdongnin $A(5) .{ }^{4}$ The structures of these dimers were elucidated by the analysis of their HRMS and NMR data, especially 2D NMR spectra. These were the first examples of entkaurane dimers that possessed a rare linkage of a single carbon-carbon bond between the two structural subunits. This unique linkage was finally confirmed by single crystal X-ray analysis.

Xindongnin M(1) was obtained as colorless cubes. Its molecular formula was determined to be $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{15}$ by positive HRFABMS (found 887.4793, calcd 887.4811 for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{O}_{15}$). ${ }^{5}$ Its ${ }^{13} \mathrm{C}$ NMR spectrum (Table 1) confirmed this formula, and exhibited carbon signals of two diterpene units ($\mathbf{1 a}$ and $\mathbf{1 b}$) bearing four acetoxy groups in total. Each of the units was further indicated to have a kaurane skeleton by the characteristic signals of three methyl groups (C-18, 19, and 20), three methine carbons (C-5, 9, and 13), and three quaternary carbons

[^0]
1

2

3

4

5

Table 1. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz})$ data of compounds $\mathbf{1}-\mathbf{5}$ in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}(\delta, J$ in ppm)

No	1		2		3			$\frac{5}{{ }^{13} \mathrm{C}}$
	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$		
1α	$1.44-1.67^{\mathrm{a}}$	35.5 t	$1.67{ }^{\text {h }}$	35.5 t	1.61 (m)	35.0 t	35.5 t	33.5 t
1β	$1.44-1.67^{\text {a }}$		$1.47{ }^{\text {i }}$		1.44 (m)			
2α	$1.87-1.96{ }^{\text {b }}$	22.9 t	1.54-1.64	22.9 t	$1.52-1.58^{\circ}$	22.6 t	23.6 t	22.6 t
2β	$1.44-1.67^{\mathrm{a}}$		$1.54-1.64{ }^{\text {j }}$		$1.52-1.58^{\circ}$			
3α	4.73 (br s)	78.6 d	4.73 (br s)	78.7 d	4.66 (br s)	77.1 d	78.3 d	77.2 d
4		37.1 s		37.1 s		35.8 s	37.3 s	35.8 s
5β	2.60 (s)	42.4 d	2.60 (s)	42.4 d	3.58 (s)	55.0 d	41.9 d	54.9 d
6β	5.60 (br s)	71.9 d	5.59 (br s)	71.9 d		206.4 s	71.4 d	202.5 s
7α	4.33 (br s)	74.6 d	4.31 (br s)	74.6 d	5.55 (br s)	80.9 d	72.9 d	80.6 d
8		50.5 s		50.1 s		53.1 s	49.5 s	53.5 s
9β	2.62 (s)	60.4 d	2.60 (s)	60.4 d	2.80 (s)	59.8 d	58.6 d	59.2 d
10		38.0 s		38.2 s		44.5 s	38.1 s	44.9 s
11α	4.33 (br s)	64.4 d	4.31 (br s)	64.4 d	4.24 (br s)	63.9 d	65.7 d	64.7 d
12α	$2.54{ }^{\text {c }}$	32.5 t	$2.50-2.54{ }^{\text {k }}$	32.5 t	$2.38{ }^{\text {p }}$	33.7 t	41.3 t	40.7 t
12β	$2.54{ }^{\text {c }}$		$2.50-2.54^{\mathrm{k}}$		$1.99{ }^{\text {q }}$			
13α	$2.64{ }^{\text {d }}$	40.9 d	2.60 (m)	40.8 d	2.56 (m)	39.3 d	37.8 d	36.9 d
14α	2.56 (d, 12.0)	35.2 t	$2.44{ }^{1}$	36.6 t	$2.37^{\text {p }}$	35.7 t		34.4 t
14β	$\begin{aligned} & 2.18 \text { (dd, } 4.0, \\ & 12.0) \end{aligned}$		2.16^{m}		$2.01{ }^{\text {q }}$			
15		226.5 s		225.7 s		213.1 s	213.0 s	206.7 s
16		80.6 s		80.5 s		80.6 s	149.7 s	151.1 s
17a	3.17 (m)	30.7 t	3.05 (m)	30.5 t	2.94 (m)	30.5 t	114.0 t	112.7 t
17 b	$2.39^{\text {e }}$		$2.26^{\text {n }}$		2.63 (m)			
18	$1.02(3 \mathrm{H}, \mathrm{s})$	28.0 q	$1.00(3 \mathrm{H}, \mathrm{s})$	28.0 q	$1.00(3 \mathrm{H}, \mathrm{s})$	26.8 q	27.9 q	27.0 q
19	1.01 (3H, s)	23.5 q	$1.00(3 \mathrm{H}, \mathrm{s})$	23.5 q	$1.31(3 \mathrm{H}, \mathrm{s})$	21.7 q	23.5 q	22.1 q
20	$1.39(3 \mathrm{H}, \mathrm{s})$	19.6 q	1.37 (3H, s)	19.6 q	1.06 (3H, s)	18.4 q	19.4 q	18.6 q
$1 \alpha^{\prime}$	$1.44-1.67^{\text {a }}$	35.4 t	1.92 (m)	33.4 t	$1.67-1.81^{\text {r }}$	34.0 t		
$1 \beta^{\prime}$	$1.44-1.67^{\text {a }}$		$2.26{ }^{\text {n }}$		$1.67-1.81^{\text {r }}$			
$2 \alpha^{\prime}$	$1.87-1.96{ }^{\text {b }}$	22.9 t	1.54-1.64	22.6 t	$1.52-1.58{ }^{\circ}$	22.3 t		
$2 \beta^{\prime}$	$1.44-1.67^{\text {a }}$		1.54-1.64		$1.52-1.58^{\circ}$			
$3 \alpha^{\prime}$	4.73 (br s)	78.6 d	4.65 (br s)	77.5 d	4.72 (br s)	78.3 d		
4^{\prime}		37.1 s		36.1 s		36.8 s		
5β	$2.57 \text { (s) }$	42.4 d	3.50 (s)	55.7 d	2.55 (s)	42.1 d		
$6 \beta^{\prime}$	$5.60(\mathrm{br} \mathrm{~s})$	71.9 d		206.5 s	$5.51(\mathrm{br} \mathrm{~s})$	71.5 d		
$7 \alpha^{\prime}$	3.93 (br s)	73.7 d	5.31 (br s)	80.6 d	3.92 (br s)	73.3 d		
8^{\prime}		50.1 s		53.8 s		50.2 s		
$9 \beta^{\prime}$	2.43 (s)	58.4 d	2.64 (s)	58.7 d	2.41 (s)	58.0 d		
10^{\prime}		38.2 s		44.4 s		37.7 s		
$11 \alpha^{\prime}$	4.28 (br s)	64.0 d	4.20 (br s)	63.9 d	4.26 (br s)	63.7 d		
$12 \alpha^{\prime}$	2.00 (m)	34.0 t	1.79 (m)	34.2 t	2.07 (m)	35.6 t		
$12 \beta^{\prime}$	2.47 (m)		$1.69^{\text {h }}$		$1.23 \text { (m) }$			
$13 \alpha^{\prime}$	2.54 (m)	33.9 d	$2.44{ }^{1}$	32.6 d	2.54 (m)	33.5 d		
$14 \alpha^{\prime}$	2.58 (d, 12.0)	33.5 t	$2.12{ }^{\text {m }}$	34.3 t	2.59 (d, 12.0)	30.6 t		
$14 \beta^{\prime}$	$\begin{aligned} & 1.24 \text { (dd, } 4.0, \\ & 12.0) \end{aligned}$		$1.49^{\text {i }}$		$2.35{ }^{\text {s }}$			
15^{\prime}		225.7 s		214.3 s		226.3 s		
16^{\prime}	$2.39{ }^{\text {e }}$	57.3 s	2.30 (m)	57.1 d	$2.38{ }^{\text {s }}$	56.8 d		
$17 \mathrm{a}^{\prime}$	2.97 (m)	20.8 t	2.89 (m)	20.5 t	$2.90(\mathrm{~m})$	20.5 t		
$17 \mathrm{~b}^{\prime}$	$2.66{ }^{\text {d }}$		2.47^{1}		2.50 (m)			
18^{\prime}	1.02 ($\mathrm{s}, 3 \mathrm{H})$	28.0 q	$1.00(3 \mathrm{H}, \mathrm{s})$	27.1 q	$1.00(3 \mathrm{H}, \mathrm{s})$	27.7 q		
19^{\prime}	1.01 (s, 3H)	23.5 q	1.30 (3H, s)	22.1 q	1.01 (3H, s)	23.3 q		
20^{\prime}	1.32 (s, 3H)	19.4 q	$1.00(3 \mathrm{H}, \mathrm{s})$	18.6 q	$1.31(3 \mathrm{H}, \mathrm{s})$	19.1 q		
Oac		170.1 s		170.1 s		170.0 s	170.6 s	169.7 s
		169.9 s		169.9 s		169.7 s	169.4 s	169.6 s
		170.1 s		169.8 s		169.6 s		
		169.9 s		169.7 s		169.5 s		
	$2.10(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{f}}$	20.9 q	$2.24(3 \mathrm{H}, \mathrm{s})$	21.3 q	2.26 (3H, s)	21.1 q	21.6 q	20.9 q
	$1.84(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{g}}$	21.3 q	2.03 (3H, s)	21.1 q	2.10 (3H, s)	20.8 q	21.3 q	20.8 q
	$2.10(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{f}}$	20.9 q	$1.88(3 \mathrm{H}, \mathrm{s})$	20.9 q	1.90 (3H, s)	20.6 q		
	$1.84(\mathrm{~s}, 3 \mathrm{H})^{\mathrm{g}}$	21.3 q	1.83 (3H, s)	20.7 q	1.85 (3H, s)	20.5 q		
OH-7	6.53 (s)		6.51 (s)					
OH-11	6.46 (s)		6.41 (s)		6.49 (s)			
OH-16	7.46 (s)		7.37 (s)		7.48 (s)			
OH-7'	6.47 (s)				6.46 (s)			
OH-11'	6.27 (s)		6.32 (s)		6.24 (s)			

[^1]

Figure 1. Selected HMBC and ROESY correlations of 1.
(C-4, 8, and 10). Considering that all the kauranoids isolated from the genus Isodon possessed an ent-configuration, the two units ($\mathbf{1 a}$ and $\mathbf{1 b}$) were presumed to also be ent-kauranes. A comparison of their NMR data with those of melissoidesin $G(4$, a known ent-kauranoid also isolated from this fraction) revealed that both $\mathbf{1 a}$ and $\mathbf{1 b}$ were very similar to 4 except at $\mathrm{C}-16$ and $\mathrm{C}-17$. The olefinic quaternary carbon ($\mathrm{C}-16$) of 4 corresponded to an oxygenated quaternary carbon ($\delta 0.6$) in 1a and a methine carbon ($\delta 57.3$) in 1b, respectively, while the olefinic methylene carbon ($\mathrm{C}-17$) of 4 was replaced by two methylene carbons ($\delta 30.7$ and 20.8) in $\mathbf{1 a}$ and $\mathbf{1 b}$. More importantly, the protons of these two methylene groups ($\delta 3.17$ and $2.39 ; \delta 2.97$ and 2.66) showed ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY correlations with each other, indicating a single bond between these two carbons belonging to $\mathbf{1 a}$ and $\mathbf{1 b}$. This was supported by a series of HMBC correlations between $\mathrm{H}_{2}-17$ with $\mathrm{C}-13,15,16$, and 16^{\prime} and $\mathrm{H}_{2}-17^{\prime}$ with $\mathrm{C}-13^{\prime}, 15^{\prime}, 16^{\prime}$, and 16 (Fig. 1).

The substituents were accordingly assigned as $3 \beta-\mathrm{OAc}$, $6 \alpha-\mathrm{OAc}, 7 \beta-\mathrm{OH}, 11 \beta-\mathrm{OH}, 3^{\prime} \beta-\mathrm{OAc}, 6^{\prime} \alpha-\mathrm{OAc}, 7^{\prime} \beta-\mathrm{OH}$, and $11^{\prime} \beta-\mathrm{OH}$, respectively, by the HMBC and ROESY correlations as shown in Figure 1. The OH-16 was suggested to be in an α-orientation by the significant upfield signal of C-12 ($\delta 32.5$) compared to that in 4, which was caused by the γ-steric compression effect between 16β-methylene group with $\mathrm{H}-12 \beta$. ${ }^{\text {a }}$ Similarly, the β-orientation was deduced for 16^{\prime}-methylene group. Finally, the structure of this diterpene dimer (1) was established as presented in Figure 1, which was confirmed by single crystal X-ray diffraction (Fig. 2). ${ }^{6}$

The positive HRFABMS and ${ }^{13} \mathrm{C}$ NMR data (Table 1) revealed xindongnin N (2) to be an analogue of $\mathbf{1}$, a diterpene dimer having the molecular formula $\mathrm{C}_{48} \mathrm{H}_{68} \mathrm{O}_{15} .{ }^{5}$ It was suggested to possess a similar linkage between its two subunits, a single carbon-carbon bond
on the basis of the characteristic ${ }^{13} \mathrm{C}$ NMR signals: an oxygenated quaternary carbon ($\delta 80.5$, due to $\mathrm{C}-16$), two methylene carbons ($\delta 30.5$ and 20.5, C-17 and C-17') and a methine carbon ($\delta 57.1, \mathrm{C}-16^{\prime}$). In contrast to $\mathbf{1}$, xindongnin N (2) was constructed from two different diterpenes units ($\mathbf{2 a}$ and $\mathbf{2 b}$). 2a Is similar to $\mathbf{4}$, while $\mathbf{2 b}$ resembled xindongnin A (5). The assignment of the oxygenated quaternary carbon (or the methylene carbon at $\delta 30.5$) was the key to the structural elucidation of 2. Detailed analysis of the COSY, HMQC, and HMBC spectra of 2 disclosed that the protons ($\delta 3.05$ and 2.26) of the methylene group ($\delta 30.5, \mathrm{C}-17$) exhibited HMBCs with both the oxygenated quaternary carbon (80.5) and a carbonyl carbon ($\delta 225.7$). And this carbonyl carbon was further indicated to be C-15 of 2a by the HMBC correlation between the characteristic H-7 ($\delta 4.31$) of 2a with this carbon. Therefore, the oxygenated quaternary carbon ($\delta 80.5$) should be assigned to C-16 of $\mathbf{2 a}$, and the structure of 2 was established to be as shown. In the same way, xindongnin O (3) was elucidated to be an isomer of 2 , in whose structure the oxygenated quaternary carbon ($\delta 80.6$) was indicated to be C-16 of the unit similar to xindongnin A (5). According to these dimers' structures, all the NMR data of 2 and $\mathbf{3}$ were successfully assigned with the aid of their 2D NMR spectra.

The biotransformation of this kind of dimers from normal ent-kauranoids isolated from the genus Isodon, was proposed to be as shown in Scheme 1. These entkauranoids normally had the α, β-unsaturated ketone groups. The $[4+2]$ cycloaddition, between the α, β unsaturated ketone group of one diterpene unit with the olefin group of a second unit, yielded a six-membered heterocycle, ${ }^{7}$ which linked the monomers together. The hydrolysis and rearrangement at this heterocycle then produced the title dimers. We note that this $[4+2]$ cycloaddition needs rigorous conditions in organic synthesis, which are impossible in plants. It is possible

Figure 2. Crystal structure of compound 1.

Scheme 1. Proposed biogenesis of 1-3.
that in the Isodon plants there may be a bio-enzyme that catalyzes this reaction.

References and notes

1. (a) Han, Q. B.; Mei, S. X.; Jiang, B.; Zhao, A. H.; Sun, H. D. Chin. J. Org. Chem. 2003, 23, 270-273; (b) Han, Q. B.; Jiang, B.; Zhang, J. X.; Niu, X. M.; Sun, H. D. Helv. Chim. Acta 2003, 86, 773-777; (c) Han, Q. B.; Li, S. H.; Peng, L. Y.; Sun, H. D. Heterocycles 2003, 60, 933-938;
(d) Han, Q. B.; Zhao, Q. S.; Li, S. H.; Peng, L. Y.; Sun, H. D. Acta Chim. Sinica 2003, 61, 1077-1082; (e) Han, Q. B.; Li, M. L.; Li, S. H.; Mou, Y. K.; Lin, Z. W.; Sun, H. D. Chem. Pharm. Bull. 2003, 51, 790-793;
(f) Han, Q. B.; Zhao, A. H.; Zhang, J. X.; Lu, Y.; Zhang, L. L.; Zheng, Q. T.; Sun, H. D. J. Nat. Prod. 2003, 66, 1391-1394.
2. The leaves (1 kg) of Isodon rubescens var. rubescens were collected in Shangcheng Prefecture, Henan Province, PR China, in August 2002. The plant material was identified by Prof. Zhong-Wen Lin, and a voucher specimen (KIB-$09-2002-L i n)$ was deposited in the Herbarium of the Department of Taxonomy, Kunming Institute of Botany, Chinese Academy of Sciences.
3. Zhao, Q. Z.; Wang, G. H.; Zheng, Z. A.; Xue, H. Z.; Zhang, Y. B.; Sun, H. D.; Shen, X. Y.; Lin, Z. W. Acta Bot. Yunnan. 1991, 13, 205-208.
4. Sun, H. D.; Lin, Z. W.; Fu, J.; Zheng, X. R.; Gao, Z. Y. Acta Chim. Sin. 1985, 2, 127-134.
5. Compound 1: colorless cubes, mp 204-206 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{22.0}-17.2$ $\left(\mathrm{MeOH}, c\right.$ 0.15); positive FABMS $m / z: 887[\mathrm{M}+\mathrm{H}]^{+}$;
positive HRFABMS $m / z:[\mathrm{M}+\mathrm{H}]^{+} 887.4811$ (calcd for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{O}_{15}$ 887.4793); IR (KBr) $v_{\text {max }}: 3444,2939,2879$, 1731, 1433, 1375, 1241, $1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, $500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$: see Table 1. Compound 2: white amorphous powder; $[\alpha]_{\mathrm{D}}^{22.0}-5.8$ $\left(\mathrm{MeOH}\right.$, c 0.17); positive FABMS $m / z: 885[\mathrm{M}+\mathrm{H}]^{+}$; positive HRFABMS $m / z:[\mathrm{M}+\mathrm{H}]^{+} 885.4633$ (calcd for $\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{O}_{15}$ 885.4636); IR (KBr) $v_{\text {max }}: 3458$, 2939, 1736, 1731, 1434, 1375, 1243, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, $500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$: see Table 1. Compound 3: white amorphous powder; $[\alpha]_{\mathrm{D}}^{22.0}-15.4$ $(\mathrm{MeOH}, ~ с ~ 0.20) ~ p o s i t i v e ~ F A B M S ~ m / z: ~ 885 ~[M+H]^{+}$; positive HRFABMS $m / z:[\mathrm{M}+\mathrm{H}]^{+} 885.4635$ (calcd for $\mathrm{C}_{48} \mathrm{H}_{69} \mathrm{O}_{15}$ 885.4636); IR (KBr) $v_{\text {max }}: 3446$, 2939, 1736, 1636, 1435, 1375, 1243, $1034 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$, $500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}, 125 \mathrm{MHz}\right)$: see Table 1.
6. Crystal data for $\mathbf{1}$. Crystals of $\mathbf{1}$, crystallized from acetone, belong to the monoclinic space group $P 2_{1}$. Crystal data: $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{O}_{15} \cdot\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.5}, \quad M=887.07, \quad a=12.826$ (1), $b=16.859(1), c=12.872(1) \mathrm{A}, \beta=104.56(1)^{\circ}, \quad V=$
2694.0(3) $\AA^{3}, \quad Z=2, \quad d=1.182 \mathrm{~g} / \mathrm{cm}^{3}, \quad$ Mo $\mathrm{K} \alpha$ radiation, linear absorption coefficient $\mu=1.0 \mathrm{~cm}^{-1}$. A colorless cube of dimensions $0.20 \times 0.20 \times 0.50 \mathrm{~mm}$ was used for X-ray measurements on a MAC DIP-2030K diffractometer with a graphite monochromator, maximum 2θ value of 50.0° was set. The total number of independent reflections measured was 4286,4253 of which were considered to be observed $\left(|F|^{2} \geqslant 3 \sigma|F|^{2}\right)$. The structure was solved by the direct method SHELXS-86 and expanded using difference Fourier techniques, refined by the program and method NOMCSDP ${ }^{8}$ and full-matrix least-squares calculations. Hydrogen atoms were fixed at calculated positions. The final indices were $R_{\mathrm{f}}=0.084, R_{\mathrm{w}}=0.086\left(w=1 / \sigma|F|^{2}\right), S_{=}=$ 4.542, $\quad(\Delta / \rho)_{\max }=0.135, \quad(\Delta / \rho)_{\min }=-0.520 \quad \mathrm{e} / \mathrm{A}^{3}$, $(\Delta / \rho)_{\max }=0.310 \mathrm{e} / \mathrm{A}^{3}$. The crystal structure of $\mathbf{1}$ has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 226868.
7. Na, Z.; Li, S. H.; Xiang, W.; Zhao, A. H.; Li, C. M.; Sun, H. D. Chin. J. Chem. 2002, 20, 884-886.
8. Lu, Y.; Wu, B. M. Chin. Chem. Lett. 1992, 3, 637-640.

[^0]: Keywords: ent-Kaurane dimer; Xindongnins M-O; Isodon rubescens var. rubescens.

 * Corresponding author. Tel.: +86-871-522-3251; fax: +86-871-5216343; e-mail: hdsun@mail.kib.ac.cn

[^1]: ${ }^{a-s}$ Signals overlapped.

