

Available online at www.sciencedirect.com

CHINESE Chemical Letters

Chinese Chemical Letters 21 (2010) 846-849

www.elsevier.com/locate/cclet

Two new 5α-adynerin-type compounds from *Parepigynum funingense*

Yan Hua^{a,*}, Hai Yang Liu^b, Wei Ni^b, Chang Xiang Chen^b

^a Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China

^b State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Academia Sinica, Kunming 650204, China

Received 1 December 2009

Abstract

A new 5α -adynerin-type cardenolide, named funingenoside U (1), together with its aglycone, (17R)-3 β -hydroxy-4 β -acetoxy-8, 14 β -epoxy-5 α -card-20(22)-enolide, was isolated from the roots of *Parepigynum funingense*. Their structures were established on the basis of spectral (MS, 1D and 2D NMR) measurements and chemical evidences.

© 2010 Yan Hua. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

Keywords: Parepigynum funingense; Chemical constituents; 5a-Adynerin-type cardenolide

Parepigynum funingense Tsiang et P. T. Li (Apocynaceae), a member of a monotypic genus, is distributed widely in Yunnan Province, People's Republic of China [1]. Due to the absence of any preview chemical studies on this species, we examined an extract of the roots from *P. funingense*. In the previous paper, we reported structural elucidation of sixteen steroidal glycosides [2–4]. Our continuing phytochemical investigation into the constituent of this plant has resulted in the isolation of one new 5α -adynerin-type cardenolide, funingenosides U (1) and its aglycone (2).

1. Experimental

The dried roots (15 kg) of *P. funingense* were extracted with 75% EtOH three times under reflux. After removal of the solvent *in vacuo*, the aqueous solution was passed through a HPD-100 column and the absorbed materials were eluted with 65% aqueous methanol and methanol, successively. The 65% methanol eluate was concentrated *in vacuo* to give a residue (138 g), which was chromatographed on a silica gel (200–300 mesh) column and eluted with gradient mixtures of chloroform/methanol from 9:1 (v/v) to 2:1 (v/v) to afford eight fractions. Fraction 4 was subjected to CC gradient elution with ethyl acetate/methanol/water (8:1:0.1 ~ 6:1:0.1, v/v/v), passaged over RP-18 eluted with methanol/water (6:4, v/v), and further purified by semi-pre HPLC (eluted by acetonitrile/water,

* Corresponding author.

E-mail address: huayan@mail.kib.ac.cn (Y. Hua).

^{1001-8417/\$ –} see front matter © 2010 Yan Hua. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved. doi:10.1016/j.cclet.2010.03.034

Fig. 1. Structures of compounds 1 and 2.

33:67, v/v) to afford compound 1 (15 mg). Fraction 1 was further subjected to silica gel (200–300 mesh) column chromatography using mixtures of chloroform/methanol (20:1, v/v) and petroleum ether/acetone (3:1, v/v) as eluents to yield pure 2 (11 mg) (Fig. 1).

2. Result and discussion

Compound 1, $\left[\alpha\right]_{D}^{26}$ - 60.3 (c 0.25, MeOH), was obtained as white powder, and analyzed for C₃₈H₅₆O₁₄ by negative-ion HRFABMS (m/z 735.4263 [M – H]⁻, calcd. for C₃₈H₅₅O₁₄, 735.4251). Its IR spectrum exhibited absorption bands for hydroxyl (3438 cm⁻¹), carbonyl (1742 and 1737 cm⁻¹), and olefinic groups (1630 cm⁻¹). The ¹H and ¹³C NMR spectra showed signals due to one acetyl group [$\delta_{\rm C}$ 21.0 (q), 170.9 (s)], one carbonyl group [$\delta_{\rm C}$ 171.2 (s)], two olefinic carbons [δ_C 173.9 (s), 116.9 (d)], two angular methyl groups [δ_C 16.3 (q), 15.1 (q)], and two anomeric carbons and their corresponding anomeric protons [δ_C 94.9 (d), 105.2 (d); δ_H 5.32 (br d, 1H, J = 3 Hz), 5.27 (d, 1H, J = 7.5 Hz)]. In the negative FABMS, significant peaks occurred at m/z 573 [M – H – 162]⁻, 429 $[M - H - 162 - 144]^{-}$, and indicated the elimination of two hexosyl moieties. Comparison of the ¹H- and ¹³C-NMR data of the aglycone with those of 5α -adynerin, 3β - β -D-diginopyranosyloxy- $8,14\beta$ -epoxy- 5α -card-20 (22)enolide showed that the structures of the two aglycones were very similar except that 1 had one additional acetoxyl group [5]. The downfield resonance of H – 4 [$\delta_{\rm H}$ 5.46 (br s, 1H)] and long-range correlations between the deshielded H-4 and the acetyl carbonyl carbon [$\delta_{\rm C}$ 170.9 (s)], suggested that the acetoxyl group was attached at C-4. 5 α -Structure was suggested by Me-19 of 1 which was shifted upfield to $\delta_{\rm C}$ 15.1 [6]. The stereochemistry of H - 3 was determined to be α -oriented by the ROESY correlation between H $_{\alpha}$ - 5 and H - 3 which indicated their *cis* relationship. The configuration of AcO - 4 could be determined by the signal of H - 4. For a chair-like conformation of the A-ring, when the substituent at C-4 is β -oriented, H_{α} - 4 appears a broad singlet. So the signal of H - 4 (br s, 1H) confirmed the β -orientation of AcO - 4. This was further supported by the evidence that there was no correlation between H - 4 and Me-19 in the ROESY spectrum. The stereochemistry of H – C(17) was determined to be α -oriented by the ROESY correlation between H_{α} - 12 ($\delta_{\rm H}$ 0.90) and H - C(17) ($\delta_{\rm H}$ 2.35) which indicated their *cis* relationship (Table 1).

Acid hydrolysis of 1 with 1 mol/L HCl furnished two monosaccharides, which were determined to be D-glucose and D-oleandrose by TLC comparison with authentic samples. The ¹³C NMR spectral data of D-oleandrose were consistent with those reported [4,7]. Sugar proton and carbon signals in the NMR spectra of compound 1 were assigned by ¹H-¹H COSY, HMQC, and HMQC-TOCSY spectra. In the HMBC spectrum, long-range couplings were observed for H – 1' of the oleandrosyl unit to C-3 of the aglycone, H – 1" of the glucosyl unit to C-4' of the oleandrosyl unit. The anomeric configurations of D-glucosyl and D-oleandrosyl were determined to be β and α , respectively, from the coupling constants of the anomeric proton signals. On the basis of the above evidence, the structure of 1 was elucidated as (17*R*)-4 β -acetoxy-3 β -[(*O*- β -D-glucopyranosyl-(1 \rightarrow 4)- α -D-oleandropyranosyl)oxy]-8, 14 β -epoxy-5 α -card-20(22)-enolide, and was named funingenoside U.

Compound **2**, $[\alpha]_D^{26} - 31.2$ (*c* 0.36, MeOH), was obtained as colorless needles (MeOH), mp 220–225 °C, and analyzed for C₂₅H₃₄O₆ by negative-ion HRFABMS (*m*/*z* 429.3155 [M – H]⁻, calcd. for C₂₅H₃₃O₆, 429.3139). Comparison of the ¹H and ¹³C NMR spectral data of **2** with those of **1** showed that the two structures were very similar except that there were no sugar moieties in compound **2**. The stereochemistry at the chiral centers in **2** were identical to

Table 1 1 H and 13 C NMR spectral data of **1** and **2** (400 MHz, C₅D₅N, δ).

Position	$1 \delta_{\rm C}$	1 $\delta_{\rm H}$	$2 \delta_{\rm C}$	$2 \delta_{ m H}$
1	36.9 t		37.2 t	
2	24.8 t		27.0 t	
3	73.8 d	3.79 (m, 1H)	70.7 d	3.88 (m, 1H)
4	72.0 d	5.46 ((br s, 1H)	76.3 d	5.61 ((br s, 1H)
5	46.9 d	1.28^{*}	47.8 d	1.46^{*}
6	23.9 t		24.0 t	
7	32.2 t		32.2 t	
8	64.4 s		64.4 s	
9	50.9 d		51.0 d	
10	37.5 s		37.5 s	
11	16.2 t		16.2 t	
12	36.6 t	$0.9^*, 1.35^*$	36.7 t	$0.92^*, 1.41^*$
13	41.8 s		41.7 s	
14	70.7 s		70.6 s	
15	27.4 t		27.3 t	
16	25.8 t		25.8 t	
17	51.3 d	2.35 (m, 1H)	51.4 d	2.36 (m, 1H)
18	16.3 q	0.84 (s, 3H)	16.3 q	0.80 (s, 3H)
19	15.1 q	1.24 (s, 1H)	15.2 q	1.24 (s, 1H)
20	173.9 s		173.8 s	
21	73.7 t	3.94 (d, 1H, $J = 11.5$ Hz)	73.6 t	3.94 (d, 1H, $J = 11.2$ Hz)
		4.80 (d, 1H, $J = 11.5$ Hz)		4.81 (d, 1H, $J = 11.2$ Hz)
22	116.9 d	6.08 (s, 1H)	116.9 d	6.06 (s, 1H)
23	171.2 s		171.0 s	
Ac	170.9 s		170.6 s	
Ac	21.0 q	2.05 (s, 3H)	21.2 q	2.03 (s, 3H)
Ole-1'	94.9 d	5.32 (br d, 1H, $J = 3$ Hz)	-	
2'	35.2 t			
3'	79.1 d			
4′	82.3 d			
5'	68.0 d			
6'	18.9 q	1.70 (d, 3H, $J = 6.5$ Hz)		
OMe-3'	56.9 q	3.4 ((s 3H)		
Glc-1"	105.2 d	5.27 (d, 1H, $J = 7.5$ Hz)		
2''	76.0 d			
3''	78.5 d			
4''	71.7 d			
5''	78.5 d			
6''	63.1 t	4.32 (dd, 1H, $J = 11.8$, 5.0 Hz)		
		4.50 (dd, 1H, $J = 11.8$, 2.0 Hz)		

Overlapping with other signals.

that of **1**. Thus, compound **2** was concluded to be the aglycone of **1**, and its structure was determined to be (17R)-3 β -hydroxy-4 β -acetoxy-8, 14 β -epoxy-5 α -card-20(22)-enolide.

Acknowledgment

The authors are grateful to the Analytical Group of the Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, for the spectral measurements.

References

- [1] Yunnan Institute of Botany, Chinese Academy of Sciences, Flora Yunnanica, Science Press, Beijing, 1983, p. 562.
- [2] Y. Hua, H.Y. Liu, W. Ni, J. Nat. Prod. 66 (2003) 898.

- [3] Y. Hua, H.M. Zhong, C.X. Chen, Heterocycles 60 (2003) 2133.
- [4] Y. Hua, L.D. Han, C.X. Chen, Helv. Chim. Acta 87 (2004) 516.
- [5] F. Abe, T. Yamauchi, Chem. Pharm. Bull. 26 (1978) 3023.
- [6] T. Yamauchi, F. Abe, M. Nishi, Chem. Pharm. Bull. 26 (1978) 2894.
- [7] Z.X. Zhang, J. Zhou, K. Hayashi, Chem. Pharm. Bull. 33 (1985) 1507.