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Abstract
Smoking is one of the most important risk factors for cerebral circulatory disorders and nicotine is considered to be the major pathogenic
compound in cigarette smoke.  Amelioration of nicotine-induced vasoconstrictions (or vasodilations) may provide a therapeutic target
for the treatment of stroke. This study will review the involvement of arachidonic  acid metabolites pathway and nicotinic acetylcholine
receptors (nAChRs) on nicotine-induced contractions (or relaxations) in the basilar artery. Arachidonic acid metabolites pathway and
nAChRs may be new drug targets and their selectivity antagonists (or agonists) may be new therapeutic drugs for the treatment of stroke.
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INTRODUCTION

Cigarette smoke is a significant risk factor of stroke1-3. Both
active smoking and passive smoking pose a risk. The
population-attributable risk for and stroke associated with
smoking4 is about 18.9%. Smoking is a chronic disease that
tends to recur because of nicotine dependency, many patients
continue smoking even after an attack of stroke. At one year
after  and  stroke,  22%  of  patients  are  still  smoking5.
Therefore, support measures to enforce nonsmoking are
required   in   this   high-risk   population.   The   risk   after
smoking cessation for 5-10 years is equal to that faced by a
non-smoker.

There are two main types of stroke: Ischemic stroke due
to lack of blood flow and hemorrhagic stroke due to bleeding.
Cigarette smoking is also one of the most important risk
factors of hemorrhagic stroke6-10. Cigarette smoking may be a
risk factor for recurrent hemorrhagic stroke after aneurysm
repair9 and it has also been associated with symptomatic
vasospasm after hemorrhagic stroke11. In recent studies,
cigarette smoking has been shown to increase the risk of
vasospasm  following  hemorrhagic  stroke  and  smokers  are
2.5 times more likely to experience a ruptured aneurysm than
non-smokers11-13. However, it was reported that 37% of
patients resume smoking after hemorrhagic stroke6. Cerebral
vasospasm after subarachnoid hemorrhage (SAH) is the
leading cause of delayed morbidity and mortality following
aneurysmal SAH14. Cerebral vasospasm is a multi factorial
disease process characterized by a combination of endothelial
and smooth muscle cell dysfunction and inflammation15-17.

Cigarette smoke is a highly complex mixture containing
thousands of different compounds18 and nicotine is
considered  to  be  the  major  pathogenic  compound  in
cigarette  smoke19.   Nicotine  is  a  chiral  molecule  and   the
S(-)-isomer  is  predominant  in  cigarette  smoke,  with  the
R(+)-isomer representing only 3-12% of total nicotine
content20,21. This present studies have specifically studied
effects of nicotine on the cerebral vascular after hemorrhagic
stroke22-24.  Therefore,  amelioration  of  nicotine-induced
vasoconstrictions  (or vasodilations) may provide a therapeutic
target for the treatment of stroke.

Nicotine is considered to most significantly affect cerebral
arterial tone in the brain. Large arteries such as the basilar
artery, make an important contribution to the total cerebral
vascular resistance and are major determinants of local micro
vascular pressure in the cerebral circulation25.

Undoubtedly,   understanding   the   mechanism   of
nicotine-induce contractions (or relaxations) in the basilar
artery  will  be  a  crucial  step  for  designing  a  more  effective

treatment    plan.    Although,    the    pharmacology    of
nicotine-induced vasocontractions (or vasodilations) was well
studied, nicotine-induced vasoconstriction (or vasodilation) in
the basilar artery was not well summarized in the basilar
artery. In the present study, we will review the involvement of
arachidonic acid metabolites pathway and nicotinic
acetylcholine receptors (nAChRs) on nicotine-induced
contractions (or relaxations) in the basilar artery. Arachidonic
acid metabolites pathway and nAChRs may be new drug
targets and their selectivity antagonists (or agonists) may be
new therapeutic drugs for the treatment of stroke.

EFFECTS OF NICOTINE IN THE BASILAR ARTERY

Nicotine could induce  contraction  or  relaxation  of  the 
basilar artery. Toda26 reported that nicotine caused a transient 
relaxation  in  the  canine  basilar  artery  which pre-contracted
with prostaglandin F2" (PGF2"). It has been reported that
nicotine  induced  endothelium-dependent  contraction  in
the basilar artery of rat22-24,27 and canine28. It has been reported
that  nicotine  induced  endothelium-dependent   rexalation
in the basilar artery of porcine29, guinea pig30 and canine26

(Table 1).
Recently, we have reported that the nicotine-induced

contractions  of  the  rat  basilar  artery  are  mostly
endothelium-dependent    at    nicotine    concentrations
(3×10G5  to  3×10G3  mol  LG1).  At  higher  nicotine
concentrations  (10G3  to  10G2  mol  LG1),  nicotine-induced
contraction is about 90% endothelium-dependent in the rat
basilar artery27.

In addition, nicotine not only induced contraction or
rexalationin the basilar artery but also affect other
pharmacological nature of the artery. For example, nicotine
potentiated 5'-triphosphate (UTP)-induced contraction
response through protein kinase C (PKC) activation in the
canine basilar artery31. Nicotine-induced contraction appeared
to be mediated by activation of nicotinic acetylcholine
receptors (nAChRs), Rho-kinase and cyclooxygenase pathways
in the rabbit corpus cavernosum32. Acute exposure to nicotine
impaired NOS-dependent dilation of the rat basilar artery33.

EFFICACY OF nAChRs IN THE BASILAR ARTERY

The  effects  of  nicotine are mediated by the interaction
of  the  alkaloid with a number of nAChRs. According to
specific pattern of distribution, three different types of nAChRs
exist: (1) Muscle-type nAChRs ("1$1δ, and "1$1δγ-nAChRs),
(2) Ganglion-type nAChRs ("3$2-nAChRs) and (3) Central
nervous   system   (CNS)-type   nAChRs   ("4$2,   "3$2    and
"7-nAChRs)34,35 (Table 2).
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Table 1: Effects of nicotine on the basilar artery
Year Specimen of basilar artery Dose of nicotine (µmol LG1) Effects Mechanism References
1975 Canine 5-10000 Contraction and relaxation nAChR, Na+ pump Toda26

1988 Canine 10000 Contraction Endothelium-dependent, TXA2 Shirahase et al.28

1997 Guinea-pig 100 Relaxation Endothelium-dependent, NO Jiang et al.30

1998 Porcine 100 Relaxation NO, nAChR Nguyen et al.32

1999 Guinea-pig 100 Relaxation 5-HT1 receptor, NO Mayhan et al.33

2000 Porcine 100 Relaxation NO Domino34

2001 Porcine 1-100 Relaxation nAChR Rang and Dale35

2002 Porcine 100 NO, nAChR Li et al.36

2006 Porcine 100 Relaxation "7-nAChR, NO Moccia et al.37 and
Devillers-Thiery et al.38

2007 Rat 30-3000 Contraction Endothelium-dependent, Ji et al.27

Arachidonic acid metabolites
2009 Porcine 100 Relaxation PGE2, EP1 receptor Lee et al.39

2011 Porcine 100 Relaxation "7-nAChR, NO Lee et al.40

2012 Monkey Relaxation NO Si and Lee41

2012 Porcine 100 Relaxation "3$2-nAChR Si and Lee42

2013 Rat 3000 Contraction Arachidonic acid metabolites, nAChR Ji et al.22-24

2014 Porcine 100 Relaxation L-type calcium channel, Wu et al.29

"3$2-nAChR

Table 2: Subtype of nAChRs
Receptor-type Location Effect and functions Nicotinic agonists Nicotinic antagonists
Muscle-type: Neuromuscular junction EPSP, mainly by increased Acetylcholine "-bungarotoxin
("1)2$1δ, or Na+ and K+ permeability Carbachol "-conotoxin
("1)2$1δ( Suxamethonium Tubocurarine

Pancuronium
Atracurium

Ganglion-type: Autonomic gangila EPSP, mainly by increased Acetylcholine Burropion
("3)2 ($4)3 Na+ and K+ permeability Carbachol 18-methoxycoronaridine

Nicotine Dextromethorphan
Epibatidine Hexamethonium
Dimethylphenylpiperazinium Ibogaine

Mecamylamine
Trimetaphan

Heteromeric Brain Post and presynaptic excitation Acetylcholine "-conotoxin
CNS-type: mainly by increase Na+ and K+ Cytisine Dextromethorphan
("4)2($2)3 permeability. Epibatidine Dihydro-$-erythroidine

Major subtype involved in the Nicotine Mecamylamine
rewarding effect of nicotine Nifene

Varenicline
Further Brain Post and presynaptic excitation Acetylcholine Dextromethopphan
CNS-type: Cytisine Hexamethonium
("3)2 ($4)3 Epibatidine Mecamylamine

Nicotine Tubocurarine
Homomeric Brain Post and presynaptic excitation mainly Cytisine "-bungarotoxin
CNS-type by increase Ca2+ permeability. Major Epibatidine Amantadine
("7)5 subtype involve in the pro-cognitive Dimethylphenylpiperazinium Dextromethorphan

effects of nicotine. Also involved in the Varenicile Mecamylamine
pro-angiogenic effects of nicotine Memantine
and accelerate the progression of Methylcaconitine
chronic kindly disease in smokers

Ganglion-type and CNS-type nAChRs belong to the
neuronal nAChR. These receptors were originally discovered
in the nervous system but  are  also  expressed  in  a  variety  of
non-neuronal  cells,  for  example,  vascular  smooth  muscle
cells from the basilar artery of the guinea pigs36 and
endothelial cells of the rat coronary microvascular37. The
muscle-type nAChRs are present exclusively in the cell
membranes of skeletal muscle38.

Various nAChRs play different biological roles in the
basilar artery. It has been reported that nicotine-induced
relaxation in the canine basilar artery and nicotine-induced
contraction   in   the   canine   mesenteric   artery   were   the
result of a specific action on nAChRs26. Wu et al.29 have been
reported  that  nicotine-induced  relaxation  in   the porcine
basilar     artery     were     in     relation     to     "3$239,40     and
"7-nAChRs36,41-48.
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Mecamylamine was an antagonistof neuronal nAChRs49-51.
Hexamethonium  was  an  antagonist  of  ganglion-type
nAChRs, which was one of the first compounds used to
discriminate the ganglionic and muscle nAChRs50. Gallamine
was an antagonist of the muscle-type nAChRs.

In this previous study24, in the rat basilar artery,
mecamylamine (CNS  and  ganglion-type  nAChRs  antagonist)
and gallamine (muscle-type nAChR antagonist) attenuated the
nicotine-induced contraction in a concentration-dependent
manner  but  hexamethonium  (ganglion-type  nAChR
antagonist) did not affect nicotine-induced contraction. These
results suggested that nicotine-induced contraction involved
the CNS nAChR subfamily and skeletal muscle nAChR
subfamily pathways. The concentration of mecamylamine
leading to attenuation was significantly lower (over 1/100th)
than the concentration of gallamine, to obtain the same
inhibitory effect on nicotine-induced contraction. In addition,
it have been reported that nicotine is a very weak agonist of
muscle nAChRs52. These results indicated that nicotine in the
rat basilar artery showed a high affinity to the CNS-type
nAChRs and low affinity to the muscle-type nAChRs.

Our group has also reported the nicotine-induced
contractions  of  the  rat  basilar  artery  are  mostly
endothelium-dependent    at    nicotine    concentrations
(3×10G5 to 3×10G3 mol LG1). At higher nicotine concentrations
(10G3 to 10G2 moL LG1), nicotine-induced contraction is about
90% endothelium-dependent in the rat basilar artery27.
Neuronal nAChRs are expressed in vascular smooth muscle
cells38 and endothelial cells37. In contrast to this, skeletal
muscle nAChRs are only present exclusively in skeletal
muscle38. 

Taken    together    with    our    preview    reports,
nicotine-induced contraction in the rat basilar artery involved
the CNS nAChR and skeletal muscle nAChR subfamily
pathways. Nicotine has a lower agonistic potency for the
muscle-type nAChRs and is a much more potent agonist for
the neuronal nAChRs. Our group assumed that the CNS-type
nAChRs in the endothelium play a key role to nicotine-induced
contraction in the rat basilar artery.

The nAChRs played a significant role to nicotine-induced
contraction (or rexalation) in the basilar artery. Furthermore,
the  nAChRs were also mediated nicotine-induced migration
of vascular smooth muscle cells36 and norepinephrine-induced
contraction in the pial arteries of cat and rabbit53,54.

The Ca2+ was one of the effectors of nAChR34,55,56. The
nAChR activation could cause a significant elevation of the
cytosolic concentrationsof Ca2+ in rat endothelium57. Nicotine
does not induce a transient increase in the intracellular free
Ca2+ concentration in rat microvascular endothelial cells37. It

also have been reported that nicotine induced a significant
Ca2+ influx in cultured superior cervical ganglionic cells but
failed to affect calcium influx in cultured sphenopalatine
ganglionic cells in the porcine basilar artery41. Stimulation of
nAChR causes the depolarization and activation of L-type Ca2+

channel in rat pineal ocytes58. The nAChRs are inhibited by
several drugs that are commonly thought to  be  specific  for
L-type Ca2+ channel59,60. It also have been reported that the
sympathetic neuronal calcium influx through L-type Ca2+

channel was modulated by "3$2-nAChRs29. It have been
considered that L-type Ca2+ channel played an important role
in the regulation of functions, especially in the synthesis and
release of vasoactiveendothelium-derived factors61,62. The
global Ca2+ signals that activate smooth muscle cell
contractionare largely due to the activation of L-type Ca2+

channels61. The L-type Ca2+ channels are present not only in
vascular smooth muscle cells63-66 but also in endothelium
cells62,67,68  in  the  arterial  system.  Nifedipine  is  an  L-type
Ca2+   channel   blocker   and   selectively   inhibited   the
nicotine-induced contractions of intracranial arteries but not
of  peripheral  arteries69.  This  study  also  indicated  that
nicotine-induced contraction involved L-type Ca2+ channels
and contraction of the rat basilar artery was inhibited by
nifedipine (10G9 to 10G8 mol LG1)24.

INVOLVEMENT OF ARACHIDONIC ACID METABOLITES
PATHWAY ON NICOTINE-INDUCED CONTRACTIONS (OR

RELAXATIONS) IN THE BASILAR ARTERY

Arachidonic acid is a key inflammatory intermediate
factor and inflammation play a central role in tissue injury and
many diseased states70,71. The levels of arachidonic acid
metabolites  are  enhanced  in  the  cerebrospinal  fluid   of
SAH patients22,23,72,73.

Phospholipase  C  (PLC)  and  phospholipase  A2  (PLA2)
catalyze the production of arachidonic acid from membrane
phospholids during cellular stimulation. Arachidonic acid is
metabolized mainly by 2 pathways: (1) The cyclooxygenase
(COX)  pathway  generates  the  unstable  intermediary
endoperoxide prostaglandin (PG) H2, which gives rise to
prostaglandins, thromboxanes and prostacyclin, (2) The
lipoxygenase   (LOX)   pathway   generates  5(S)-hydroperoxy-
6-trans-8,11,14-cis-eicosatetraenoic acid, which gives rise to
5(S)-hydroxy-6-trans-8, 11, 14-cis-eicosatetraenoic acid and
leukotrienes.

It is also reported that nicotine-induced contraction of 
the   rat   basilar   artery  via  the  CNS-type  nAChRs  and
muscle-type nAChRs pathways24 and nAChRs signaling is
involved in the PLC pathway74,75.
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Fig. 1: Involvement of arachidonic acid metabolites nicotine-induced contractions (or relaxations) in the basilar artery

It has been reported that nicotine-induced contraction
involves thromboxane A2 (TXA2) in the canine basilar artery28.
In the rat coronary artery, nicotine-induced contraction
involves  endothelial  COX-1  metabolites  of  arachidonic
acid76.  This  present  studies  reported  that  the  PLC  (or
calcium-independent PLA2), COX-2, 5-LOX and BLT2 pathways
may    be    the     main     signaling     pathways     involved     in
nicotine-induced   contraction   in   the   rat   basilar   artery
(Fig. 1)21,30.  The  PGF2"  could  induce  endothelium-dependent
contraction in the porcine77 and canine78 basilar arteries.
Nicotine could cause a transient relaxation in the canine
basilar artery which pre-contracted26,29 with PGF2".

The PLA2 is a family of enzymes that is ubiquitous in
mammalian cells and plays an important role in the
maintenance of membrane phospholipids, as well as the
production of inflammatory lipid mediators that regulate
cellular activity. In mammalian cells, PLA2 is known to be
present in several isoforms79. There are three broad classes of
PLA2  based  on  the  cellular  disposition  and  calcium
dependence. A family of low molecular mass (14 kDa)
enzymes,  depending  on  high  calcium  concentrations  (of
the mmol LG1 order), have been termed sPLA2. A second form,
cPLA2 is activated by low concentrations (:moL LG1) of
calcium80.  A third form, iPLA2 is Ca2+-independent and shares

some characteristics with sPLA2 and others81 with cPLA2. It has
been reported that iPLA2 represents about 80% of the total
PLA2  activity82.  The  iPLA2  was  present  in  the  endothelial
cells, but weak signals were also detected in the smooth
muscle  cells83.  The  iPLA2  played  a  key  role  in  the
endothelium-dependent contractions to acetylcholine in the
aorta of the spontaneously hypertensive rat83. Our group also
reported that  iPLA2 was an important isoform among the
three PLA2 isoforms regarding contraction induced by
nicotine. Nicotine-induced contraction in the rat basilar artery
is partially due to PLC and iPLA2 activation.

 In the basilar artery, COX catalyses the production of
prostanoids from arachidonic acid84,85. Two distinct COX
isoforms have been identified and both perform the same
catalytic reaction and inhibit the conversion of arachidonic
acid to prostanoids. The COX-1 is expressed constitutively in
most tissues throughout the body, including the
gastrointestinal tract, kidneys and platelets. The COX-2 is
normally expressed at low levels in normal tissue, but it is
stimulated to express strongly by inflammatory mediators at
sites of inflammation86-88. Our group indicates that COX-2 but
not COX-1, is involved in nicotine-induced contraction in the
rat basilar artery, suggesting that nicotine may play a role as a
pro-inflammatory mediator.
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The ZM-230487 (5-LOX inhibitor) attenuated the
contraction    of    the    rat    basilar    artery    in    a
concentration-dependent manner. The 5-LOX is the key
enzyme  involved  in  leukotriene  biosynthesis   and   catalyzes
the initial steps in the conversion of arachidonic acid to these
biologically active lipid mediators, which are known to exert
proinflammatory effects in vivo89. In this present study
concerning the effects of the 5-LOX inhibitor (ZM-230487) on
vasopressin-induced   contraction   in   the   rat   basilar   artery,
ZM-230487   attenuated   the   contraction90.   As   far  as
nicotine-induced contraction in the rat basilar artery is
concerned, the activation of 5-LOX may play a role in
promoting the formation  of  not  only  atherosclerotic  lesions,
but also aortic aneurysms91. These studies suggest that
smoking    and    particularly    nicotine,    may    activate    the
5-LOX pathways in the cerebrovascular system.

Cigarette smoke is related to enhanced cysteinyl
leukotriene   (CysLT)   synthesis92.  The   levels   of   leukotriene
B4 (LTB4) and leukotriene E4 (LTE4) were 4 times higher in the
blood of cigarette smokers than in that of the controls93.
Moreover, the urinary excretion of thromboxane A2 (TXA2)
metabolite was higher in cigarette smokers than in the
controls94. The TXA2 is a cyclooxygenase metabolite of
arachidonic    acid,    whereas    LTB4    and    CysLTs    are    the
5-lipoxygenase (5-LOX) metabolites of arachidonic acid.

The LTB4, an endothelium-derived contracting factor, was
found in the rat coronary artery95 and the guinea pig aorta96.
Neither LTC4 nor LTD4 lead to the contraction or relaxation of
the isolated human cerebral artery strips97. Physiological
concentrations of nicotine do not affect thromboxane
production in the human umbilical vein98. 

In  the  previous  study,  we  observed  that  the
antagonists of the TXA2 and CysLT receptors did not affect
nicotine-induced contraction. In contrast, the antagonists of
LTB4  receptor  (BLT1  and  BLT2)  significantly  attenuated
nicotine-induced contraction in the rat basilar artery. The
concentration of LY255283 (a BLT2 receptor antagonist) that
produced attenuation was significantly lower than that of
CP105696 (a BLT1 receptor antagonist),  in order to obtain the
same inhibitory effect on nicotine-induced contraction. These
results suggest that LTB4 is involved in nicotine-induced
contraction in  the  rat  basilar  artery,  whereas,  TXA2  and
CysLTs are not involved. Moreover, nicotine in the rat basilar
artery  exhibits  a  higher  affinity  for  BLT2   receptor   than
BLT1 receptor. The study found that blockade LTB4 receptors,
BLT1 and BLT2, abrogate nicotine-induced cerebrovascular
vasoconstriction in a dose-dependent manner whereas
blockade of cysteinyl LT (CysLT, collectively LTC4, LTD4 and
LTE4) and TXA2 receptors does not affect contractility. 

PERSPECTIVES

Taken  together  with  preview  reports  and this studies,
nicotine-induced     contractions     (or     relaxations)     in     the
basilar   artery  is  concentration-dependent  and
endothelium-dependent. This study provides novel
pharmacological    evidence   for   the   first   time   that
nicotine-induced  vasoconstrictions (or vasorelaxations) is
about 90% endothelium-dependent in the basilar artery and
nicotine in the basilar artery showed a high affinity to the
neuronal nAChR subfamily and low affinity to the skeletal
muscle  nAChR  subfamily.  The  nAChRs  signaling  is  involved
in    the    arachidonic    acid    metabolites.    Nicotine-induced
contractions  (or  relaxations)  might  be  due  to  the  products
of  membrane  phospholipids  involving  arachidonic  acid
metabolites pathway in the basilar artery (Fig. 1). This review
elucidates the arachidonic acid metabolites pathways and
nAChRs      involved      in      nicotine-induced      contractions
(or  relaxations).  This  study  may  represent  a  new
cerebrovascular pathology and play critical roles in fatal
cerebral circulatory disorders.  Arachidonic  acid  metabolites 
pathway  and nAChRs maybe new drug targets and their
selectivity antagonists (or agonists) may be new therapeutic
drugs for the treatment of stroke.
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