

Natural Product Research

Formerly Natural Product Letters

ISSN: 1478-6419 (Print) 1478-6427 (Online) Journal homepage: http://www.tandfonline.com/loi/gnpl20

Antioxidant and hyaluronidase inhibitory activities of diverse phenolics in Phyllanthus emblica

Min Xu, Hong-Tao Zhu, Rong-Rong Cheng, Dong Wang, Chong-Ren Yang, Takashi Tanaka, Isao Kouno & Ying-Jun Zhang

To cite this article: Min Xu, Hong-Tao Zhu, Rong-Rong Cheng, Dong Wang, Chong-Ren Yang, Takashi Tanaka, Isao Kouno & Ying-Jun Zhang (2016) Antioxidant and hyaluronidase inhibitory activities of diverse phenolics in Phyllanthus emblica, Natural Product Research, 30:23, 2726-2729, DOI: 10.1080/14786419.2015.1137573

To link to this article: http://dx.doi.org/10.1080/14786419.2015.1137573

→ View supplementary material 🗹	Published online: 12 Feb 2016.
Submit your article to this journal 🗹	Article views: 255
Q View related articles ☑	View Crossmark data 🗹
Citing articles: 1 View citing articles	

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gnpl20

SHORT COMMUNICATION

Antioxidant and hyaluronidase inhibitory activities of diverse phenolics in *Phyllanthus emblica*

Min Xu^a, Hong-Tao Zhu^a, Rong-Rong Cheng^a, Dong Wang^a, Chong-Ren Yang^a, Takashi Tanaka^b, Isao Kouno^b and Ying-Jun Zhang^a

^aState Key Laboratory of Phytochemistry & Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; ^bGraduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan

ABSTRACT

Fifty-eight phenolic compounds isolated from *Phyllanthus emblica* were screened and compared for their *in vitro* and *in vivo* antioxidant properties, as well as hyaluronidase (HAase) inhibitory activities. Among them, 20 compounds showed to be promising antioxidants due to the stronger scavenging activity in both DPPH radical and *Danio rerio* reactive oxygen species assays, while nine compounds were potential HAase inhibitors with 100-fold stronger activities than that of the positive control, DSCG. The structure activity relationship was discussed.

Eligiannins A Condensed tamins A Flavonoids A romatic compounds and organic acid gallates Phyllanthus emblica Phyllanthus emblica Phyllanthus emblica Phyllanthus emblica Phyllanthus emblica Phyllanthus emblica Inhibition activity on HAase Inhibition activity on HAase Inhibition activity on HAase

ARTICLE HISTORY

Received 25 August 2015 Accepted 3 December 2015

KEYWORDS

Phyllanthus emblica; phenolics; antioxidant; DPPH radical; Danio rerio ROSscavenging activity; HAase inhibition

1. Introduction

Phyllanthus emblica L. (Euphorbiaceae), a fruit-bearing tree widely growing in the southern China, India, and Southeast Asia, has been used in many traditional medicinal systems, and its fruits are consumed freshly or processed into food products in its growing areas

(Calixto et al. 1998). Various chemical constituents have been reported from the titled plant; (Habib-ur-Rehman et al. 2007; El-Desouky et al. 2008; Lv et al. 2014, in supplementary material), and a wide range of bioactivities of P. emblica were associated with its phenolic constituents (Guo et al. 2013; Gaire & Subedi 2016). However, comprehensive and systemic evaluations, particularly the in vivo antioxidant activity on diverse phenolics from P. emblica, are unavailable. Herein, we report the inhibitory activity on hyaluronidase (HAase) and antioxidant activity in DPPH radical and Danio rerio reactive oxygen species (ROS)-scavenging assays of 58 phenolics from *P. emblica*. The structure activity relationship of the phenolics was discussed.

2. Results and discussion

2.1. Compounds from P. emblica

Fifty-eight phenolics isolated previously from P. emblica by our group comprised of five structural types, ellagitannins (1-18), gallotannins (19-25), simple phenolics (25-35), condensed tannins (36-44), and flavonoids (45-58) (Figures S1 and S2).

2.2. HAase inhibition of phenolics from P. emblica

Fifty compounds (1-24, 28-33, 35-45, 47-54, 57) were tested for the HAase inhibitory activity (Table S1 and Figure S3(a-e)). Eight hydrolysable tannins (2, 4-6, 10, 14-15, 22) and one dihydroflavone (45) with a galloyl group in molecules showed the strongest activity (IC_{50} < 0.09 mM), almost 100-fold stronger than that of the positive control (DSCG, $IC_{50} = 6.99 \pm 0.78$ mM). The order of their inhibitory ability was 22 > 2 > 6 > 5 > 10 > 15 >4 > 14 > 45.

According to the structural types, the HAase inhibitory ability of phenolics in P. emblica was ellagitannins > condensed tannins > flavonoids > gallotannins > simple phenolics (Figure S3(f)). As the major phenolics in P, emblica, ellagitannins 1-18 showed mostly the strongest activity. All gallotannins (19–25) also showed stronger activities than the positive control, except 24 with the fewest free hydroxyl group in molecule. Among the simple phenolics 28–33 and 35, only 28 displayed stronger activity ($IC_{50} = 0.61$ mM) than positive control. All the condensed tannins 36-44 and flavonoids 45, 47-54, and 57 showed stronger activities than positive control. Among which, 45 showed the strongest activity ($IC_{50} = 0.09$ mM). The aforementioned results suggested that the HAase inhibition assay showed a clear correlative relationships (Figure S3(g-h)) between the phenol, especially ortho-dihydroxyphenol numbers. For example, the activity order of 6 > 3 > 9 > 13 was accordant with the phenol and ortho-dihydroxyphenol numbers. The one with more ortho-dihyroxyphenol units exhibit stronger activity. On the other hand, more free carboxyls in molecules decreased the inhibition effects on HAase, e.g. compounds 1 and 25-35.

2.3. DPPH radical-scavenging activity of phenolics from P. emblica

The DPPH radical-scavenging activities of 1–58 were shown in Table S1 and Figure S4(a–e). The ellagitannins exhibited the strongest activity. For example, 1-4 showed roughly six-fold

stronger activities than positive control. Gallotannins (19–25) and condensed tannins (36–44) also displayed stronger activities than positive control. Of them, the gallotannins (19–21) with more free hydroxyl groups showed the strongest activities. All simple phenolics 25–35 showed the lowest activities, due to less or no *ortho*-dihydroxyphenol unit in molecules. Flavonoids (45–58) displayed the same radical-scavenging ability with positive control. Among them, 45–47 with galloyl group showed the strongest activities. The above results indicated a clear correlative relationship in DPPH radical-scavenging assay (Figure S4(g–h)). For example, the less phenol and *ortho*-dihydroxyphenol numbers (8 < 7 < 1 < 6), the weaker DPPH radical-scavenging ability it have. This was consistent with that reported in the literatures (Wang et al. 2007), indicating that the antioxidant activity of phenolics decreased when less numbers of *ortho*-dihydroxyphenol units existed in molecules.

2.4. Danio rerio ROS-scavenging activity of phenolics from P. emblica

All of the isolates 1-58 were tested for their individual antioxidant activities in zebrafish model (Table S1 and Figure S5(a-e)). Most tested phenolics displayed potential activity in ROS-scavenging assay. At a concentration of 30 µM, 15 compounds with an activity order of 46 > 8 > 41 > 56 > 44 > 42 > 51 > 53 > 2 > 49 > 55 > 58 > 45 > 57 > 35 showed more than 100% ROS clearance rates. Ten of them (44–46, 49, 51, 53, 55–58) were flavonoids, which showed weaker activities than ellagitannins in DPPH radical assay. Most ellagitannins and gallotannins with promising DPPH radical-scavenging activities showed no activity in the ROS-scavenging assay, except ellagitannins 2 and 8. The order of the ROS clearant ability of phenolics in *P. emblica* was flavonoids > simple phenolics > condensed tannins > gallotannins > ellagitannins (Figure S5(f)). The aforementioned observation showed that, unlike DPPH radical-scavenging activity, the in vivo antioxidant activity of phenolic compounds has no direct relationship with their free phenol or ortho-dihydroxyphenol units. However, ellagitannins with less free carboxyl groups showed stronger ROS-scavenging abilities. This is consisted with DPPH radical-scavenging activity. Moreover, ellagitannins 2 and 8 with an elaeocarpusinosyl (Ela) ester group, showed the strongest ROS-scavenging activity, indicating that the Ela fragment should be a good scaffold for the in vivo ROS-scavenging activity. The condensed tannins with ortho-trihydroxyphenol exhibited stronger ROS-scavenging activities than the ones with ortho-dihydroxyphenol, and the dimers 37-38 and 40 exhibited weaker activity than the monomers (36, 42).

3. Conclusion

Most of the phenolics in *P. emblica* showed potential antioxidative and HAase inhibitory activities. Six ellagitannins (2–3, 7–8, 13, 17), one gallotannin (19), two simple phenolics (31, 33), four condensed tannins (36, 41–42, 44), and six flavonoids (45–46, 49, 51, 53, 55, 58) are promising antioxidants, due to their stronger activities in both DPPH radical and *in vivo* ROS-scavenging assays. Seven ellagitannins (2, 4–6, 10, 14–15), one gallotannin (22) and one flavonoid (45) were potential HAase inhibitors, due to their 100-fold stronger activities than positive control. The numbers of free phenols and *ortho*-dihydroxyphenols in molecules increased the activity of phenolics in both HAase and DPPH assays. It is also noted that the existence of more free carboxyl groups in phenolics would impair their antioxidant activities *in vivo* and *in vitro*. With the existence of Ela ester group, the phenolics displayed stronger

antioxidant potential in vivo ROS-scavenging assay, suggesting Ela unit should be a good scaffold for antioxidative properties. The present study supported that *P. emblica* represents a valuable natural source of antioxidants and HAase inhibitors with useful potential for food, cosmetic and pharmaceutical industries.

Supplementary material

Supplementary material relating to this article is available online: experimental part, structures of compounds 1-58 (Figures S1-S2), HAase inhibitory, DPPH radical and Danio rerio ROS-scavenging activities of 1-58 (Figures S3-S5 and Table S1).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the NSFC [grant number 21002105], [grant number 81473121]; the 12th Five Year National Science & Technology Supporting Program [grant number 2012BAl29B06]; the National Science and Technology Support Program of China [grant number 2013BAl11B02]; the Fourteenth Candidates of the Young Academic Leaders of Yunnan Province (Min XU) [grant number 2011Cl044]; the West Light Foundation of the Chinese Academy of Sciences.

References

- Calixto JB, Santos AR, Cechinel Filho V, Yunes RA. 1998. A review of the plants of the genus *Phyllanthus*: their chemistry, pharmacology, and therapeutic potential. Med Res Rev. 18:225–258.
- El-Desouky SK, Ryu SY, Kim YK. 2008. A new cytotoxic acylated apigenin glucoside from *Phyllanthus* emblica L. Nat Prod Res. 22:91-95.
- Gaire BP, Subedi L. 2016. Phytochemistry, pharmacology and medicinal properties of Phyllanthus emblica Linn. Chin J Integr Med. 1-8. doi:http://dx.doi.org/10.1007/s11655-014-1984-2.
- Guo X, Ni J, Liu X, Xue J, Wang X. 2013. Phyllanthus emblica L. fruit extract induces chromosomal instability and suppresses necrosis in human colon cancer cells. Int J Vitam Nutr Res. 83:271-280.
- Habib-ur-Rehman, Yasin KA, Choudhary MA, Khaliq N, Atta-ur-Rahman, Choudhary MI, Malik S. 2007. Studies on the chemical constituents of Phyllanthus emblica. Nat Prod Res. 21:775–781.
- Lv JJ, Wang YF, Zhang JM, Yu S, Wang D, Zhu HT, Cheng RR, Yang CR, Xu M, Zhang YJ. 2014. Anti-hepatitis B virus activities and absoute configurations of sesquiterpenoid glycosides from *Phyllanthus emblica*. Org Biomol Chem. 21:8764-8774.
- Wang KJ, Yang CR, Zhang YJ. 2007. Phenolic antioxidants from Chinese toon (fresh young leaves and shoots of Toona sinensis). Food Chem. 101:365-371.