Sladenia integrifolia (Sladeniaceae), a New Species from China
Author(s): Shui Yu-Min, Zhang Guang-Jie, Zhou Zhe-Kun, Mo Ming-Zhong
Reviewed work(s):
Source: Novon, Vol. 12, No. 4 (Winter, 2002), pp. 539-542
Published by: Missouri Botanical Garden Press
Stable URL: http://www.jstor.org/stable/3393135
Accessed: 19/12/2011 03:31

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Sladenia integrifolia (Sladeniaceae), a New Species from China

Shui Yu-Min, Zhang Guang-Jie, Zhou Zhe-Kun
Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming 650204, P. R. China. shuiyumin@hotmail.com
Mo Ming-Zhong
Jinping Forestry Bureau, The Forestry Department of Yunnan Province, Yunnan, Jinping 661500, P. R. China

ABSTRACT. A new species of Sladenia (Sladeniaceae) from China, Sladenia integrifolia Y. M. Shui, is described and illustrated. The relationship to and characters distinguishing the new species from Sladenia celastrifolia Kurz are discussed. The systematic position of the genus is also reviewed.

Key words: China, Sladenia, Sladeniaceae.

Between 15 and 26 October 1999, the authors made an expedition to the Xilongshan range of Jingping County, southeastern Yunnan, China, adjacent to southwestern Vietnam. During the expedition, the specimen Zhou Zhe-Kun et al. EXLS-0039 (fr) was identified as Sladenia celastrifolia Kurz. However, further study showed that the entire margin of the leaves differed from the serrated margin of those of Sladenia celastrifolia. On 15 May 2001, another specimen, Mo Ming-Zhong, Mao Rong-Hua & Yu Zhi-Yong 05 (fl), was collected, and more differences were found. As a result, a new species of Sladenia Kurz (Sladeniaceae) is here described.

Sladenia integrifolia Y. M. Shui, sp. nov. TYPE: China. Yunnan: Jinping Co., Zhemi community, Citongba to Liangzi, second dry evergreen forests, 1100-1300 m, 15 May 2001 (fl), Mo Ming-Zhong, Mao Rong-Hua & Yu Zhi-Yong 05 (holotype, KUN 0735701; isotypes, MO, PE). Figure 1.

Species Sladeniae celastrifolae similis, sed foliis integris, floribus lateralibus pedicellis 2.5-4 mm longis, sepaliis late ovatis, 2.0 mm longis, 1.5 mm latis, filamentis base non connatis, fructibus 3 mm longis et crustaceis. costis non conspicuis, differt.

Evergreen trees, 13-15 m tall; branchlets green, terete, turgid, glabrous throughout; buds broadly ovate, glabrous. Leaves spiral, papery, glabrous, ovate or lanceolate, 5-11 cm long, 2.5-4.0 cm wide, adaxially deep green, abaxially greenish; base broadly cuneate, slightly decurrent on the petiole; margin entire, apex acuminate or caudate, with obtuse tip; midrib shallowly canaliculate on adaxial surface, raised on abaxial, lateral veins in 7 to 9 pairs, raised on both surfaces, secondary nerves sparse, slightly prominent on both surfaces; petiole 0.7-0.9 cm long, glabrous. Dichotomous cymes axillary, usually 4- or 5-forked, congested, with 14 to 17 flowers; peduncle glabrous, 0.4-0.8 cm; terminal flowers with pedicels 0.2-0.3 mm long, lateral flowers with pedicels 2.5-4.0 mm long; bracts narrowly ovate, ca. 2 mm long; bracteoles ovate, ca. 0.8 mm long, glabrous, caducous. Sepals broadly ovate, imbricate, ca. 2 mm long, 1.5 mm wide, obtuse at apex, with ciliate margin, not sprawling-reverse in fruit. Corolla white, urn-shaped, glabrous, ca. 3 mm long, ca. 3 mm diam. at base, 5-fid at apex; corolla tube 0.7-0.8 mm long; lobes 5, involute, concave, oblong, 2.2-2.3 mm long, 1.5-1.7 mm wide. Stamens 8 to 10, inserted at base of corolla; filaments free, ca. 0.8 mm long, ca. 0.4 mm wide, acute at apex; anthers in flexed, ovate, ca. 0.8 mm long, apex 2-dehiscent with 2 hairs, base sagittate with 2 hairs on each side; ovary 3-locular, conoid, ca. 2 mm long, ca. 0.9 mm diam. at base, glabrous, apex continuous with style, tip 3-fid. Fruit ovoid, crustaceous, slightly striate, ca. 3 mm long, 1.0-1.1 mm diam. Seeds trigonal, winged, ca. 1.5 mm long, ca. 0.3 cm wide.

Habitat. In secondary evergreen forests, 1000-1300 m.

Phenology. Flowering March to June; fruiting July to December.

Distribution. China (SE Yunnan Province).

The flower and fruit characteristics of Zhou Zhe-Kun et al. EXLS-0039 clearly belong to those of the genus Sladenia, as elaborated on by Ming (1997). However, the entire leaves show that it is not identical to Sladenia celastrifolia. The new species further differs from Sladenia celastrifolia in its glabrous twig, broadly ovate sepals, 2.5-4.0 mm long.
Table 1. Differences between *Sladenia celastrifolia* and *S. integrifolia*.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Sladenia celastrifolia Y. M. Shui</th>
<th>Sladenia celastrifolia Kurz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf margin</td>
<td>entire</td>
<td>serrate, rarely entire</td>
</tr>
<tr>
<td>Lateral pedicel</td>
<td>2.5–4 mm</td>
<td>7–10 mm</td>
</tr>
<tr>
<td>Cymes</td>
<td>4– or 5-forked, congested</td>
<td>2– or 3-forked, spananthus</td>
</tr>
<tr>
<td>Sepal</td>
<td>broadly ovate; not erect in mature fruit; 2.0 mm long, 1.5 mm wide</td>
<td>oblong; sprawling-reverse in mature fruit; 5–6 mm long, 2–3 mm wide</td>
</tr>
<tr>
<td>Corolla</td>
<td>2.9–3.1 mm long, connate at base</td>
<td>5.3–6.4 mm long, almost distinct at base</td>
</tr>
<tr>
<td>Corolla tube</td>
<td>0.7–0.8 mm long, ca. 1/4 as long as corolla</td>
<td>0.3–0.4 mm long, ca. 1/17 as long as corolla</td>
</tr>
<tr>
<td>Corolla lobe</td>
<td>broadly oblong; 2.2–2.3 mm long, 1.5–1.7 mm wide</td>
<td>oblong; 5–6 mm long, 2–3 mm wide</td>
</tr>
<tr>
<td>Filament</td>
<td>0.8 mm long, 0.4 mm wide, distinct at base</td>
<td>1.5 mm long, 1 mm wide, connate at most weakly</td>
</tr>
<tr>
<td>Stamens</td>
<td>8 to 10</td>
<td>10 to 13</td>
</tr>
<tr>
<td>Anther</td>
<td>ovate, 0.8 mm long</td>
<td>sagittate, 2 mm long</td>
</tr>
<tr>
<td>Ovary</td>
<td>conoid, obtuse at apex</td>
<td>pyramidal, acuminate at apex</td>
</tr>
<tr>
<td>Fruit</td>
<td>ovoid, slightly striate, crustaceous; 3 mm long, 1.0–1.1 mm diam.</td>
<td>bottle-shaped, ribbed, woody; 7–8 mm long, 3–4 mm diam.</td>
</tr>
<tr>
<td>Seed</td>
<td>1.5 mm long, 0.3 cm wide</td>
<td>3 mm long, 1 mm wide</td>
</tr>
</tbody>
</table>

The formerly monotypic genus *Sladenia* is allied with Dilleniaceae (Gilg, 1893), Linaceae (Haller, 1923), Sladeniaceae (Airy Shaw, 1964), Actinidiaceae (Gilg & Werdermann, 1925; Hutchinson, 1969), and Theaceae (Kurz, 1873; Keng, 1962; Cronquist, 1981; Takhtajan, 1990; Thorne, 2000). Airy Shaw (1964) considered it to be a monotypic family, Sladeniaceae. In *Sladenia* the basic number of chromosomes (Li, 2002), the character of wood anatomy (Deng & Baas, 1990, 1991), the apical pore of the anthers (Kobuski, 1951; Keng, 1962), palynology (Wei et al., 1997), and embryology (Li et al., 2002) are all considerably different from the family Theaceae. Molecular DNA allies *Sladenia* with the East African *Ficalhoa* Hiern, the two forming the sister taxon to Ternstroemiaceae (Anderberg et al., 2002). It is thus reasonable that the group is considered to be a monotypic family. Currently, materials of testa anatomy and chemistry are poorly known. A detailed systematic study of the characteristics and relationships in light of the new species will be significant to understanding the position of the genus *Sladenia* in angiosperms.

Acknowledgments. This research was funded by the National Natural Science Foundation of China (grant no. 39930020), the National Natural Science Foundation of Yunnan Province, China (grant no. 2001C22Q), and the Taxonomy and Flora Special Foundation, Chinese Academy of Sciences (CAS). The authors are also indebted to Wu Zheng-yi, Ming Tian-lu, and Peng Hua (KUN) for their guidance. Li Lu was insightful in modifying the errors in the figure. Additionally, Wu Xi-Lin is thanked for his excellent drawing. Finally, Mao Yong-hua and Yu Zhi-yong were very helpful during fieldwork.

Literature Cited

Cronquist, A. 1981. P. 322 in An Integrated System of

