
A New Tricyclo[6.3.1.0^{2,5}]dodecane Sesquiterpene from Cultures of the Basidiomycete *Campanella junghuhnii*

by Rong Liu^a), Zhong-Yu Zhou^a), Di Xu^a)^b), Fei Wang^a), and Ji-Kai Liu^{*a})

 ^a) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China (phone: +86-871-521-6327; fax: +86-871-515-0227; e-mail: jkliu@mail.kib.ac.cn)
^b) South China Agricultural University, Guangzhou 510642, P. R. China

A new sesquiterpene with a tricyclo $[6.3.1.0^{2.5}]$ dodecane skeleton, 2,3,6-trihydroxycaryol-5-en-7-one (1), was isolated from the culture of the basidiomycete *Campanella junghuhnii*. The structure of 1 was elucidated on the basis of extensive spectroscopic analysis including IR, UV, MS, 1D- and 2D-NMR experiments.

Introduction. – *Campanella junghuhnii*, belonging to the family Marasmiaceae, is a small, thin, white mushroom, usually growing on bamboo stems [1]. So far, secondary metabolites produced by fungi of the genus *Campanella* have not been reported. As one part of our research for naturally occurring bioactive metabolites from higher fungi in China [2–6], we have carried out a chemical investigation on the cultures of *C. junghuhnii* which led to the isolation of a new sesquiterpene (1). Comparison of the NMR data of 1 with those of the cytotoxic sesquiterpene caryol-7-en-6-ol (2) [7], which was isolated from a New Zealand sponge of the genus *Eurypon*, implied that they share the same tricyclo[$6.3.1.0^{2.5}$]dodecane skeleton. This is the first report of the isolation of a sesquiterpene with this skeleton from a higher fungus. The structural elucidation of 1 was mainly performed with 1D- and 2D-NMR experiments.¹)

Results and Discussion. – The culture of *C. junghuhnii* (201) was filtered, and the filtrate was extracted four times with AcOEt. The organic layer was concentrated *in vacuo* to give a crude extract (40 g), which was subjected to repeated column chromatography to afford pure 1.

¹⁾ Arbitrary numbering. For the systematic name, see *Exper. Part.*

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

Compound **1** was obtained as a colorless oil. The HR-ESI-MS exhibited a *quasi*molecular ion peak at m/z 289.1420 ($[M + Na]^+$; calc. 289.1415), indicating the molecular formula $C_{15}H_{22}O_4$. The IR spectrum showed absorption bands for OH (3422 cm⁻¹), C=O (1734 cm⁻¹), and C=C (1667 cm⁻¹) functional groups. Based on the UV absorption maximum at 277 nm, and the C=O signal at $\delta(C)$ 198.2 (*s*, C(7)) and C=C signals at $\delta(C)$ 123.5 (*d*, C(5)¹)) and $\delta(C)$ 146.3 (*s*, C(6)) in the ¹³C-NMR spectrum (*Table*), it was concluded that the C=O group was present as a α,β unsaturated ketone group. Broad-band decoupled ¹³C-NMR and DEPT spectra disclosed the presence of three Me, two CH₂, and six CH groups (thereof two O–CH groups at $\delta(C)$ 70.1 (*d*, C(2)) and $\delta(C)$ 81.6 (*d*, C(3))), and four quaternary C-atoms. Comparing the ¹³C-NMR data of **1** with those of **2**, the five degrees of unsaturation of **1** required by the molecular formula could be accommodated by the presence of an enone group and of a tricyclic skeleton.

¹H,¹H-COSY spectrum of **1** revealed two spin systems: The the C(3)-C(2)-C(1)-C(9)-C(8)-C(12) and the C(9)-C(10) unit (see the formula for the arbitrary numbering system). C(2) and C(3) were both substituted by OH groups as deduced from the NMR signals (*Table*) at δ (H) 4.18 (*dd*, *J*=11.6, 1.2, H-C(2), $\delta(C)$ 70.1 (d, C(2)), $\delta(H)$ 3.68 (d, J = 1.2, H-C(3)), $\delta(C)$ 81.6 (d, C(3)) and the HMBC of H-C(2) with C(1), C(3), C(9), and C(11), and H-C(3) with C(1), C(2), C(4), C(5), and C(13) (Fig. 1). The HMBC spectrum showed also correlations from H–C(5), H–C(8), H–C(9), and H–C(12) to the ketone C=O group at δ (C) 198.2 (s, C(7)), which indicated that the ketone C=O group is located at C(7) and the C=C bond at C(5)/C(6). Furthermore, an oxygenated olefinic quaternary C-atom $(\delta(C))$ 146.3) assigned to C(6) was supported by the HMBCs from H–C(8) to C(6), and from H-C(12) and H-C(13) to C(5). The relative configuration of **1** was determined by a ROESY experiment. The ROESY correlations (Fig. 2) of H-C(3) and H-C(5)with α -Me(13), H-C(8) and Me(15) with H_a-C(10), H-C(2) with α -Me(15), H-C(1) and H-C(9) with H_{β} -C(12), and Me(14) with H_{β} -C(10) indicated that

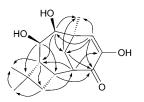


Fig. 1. Key HMBC data of 1

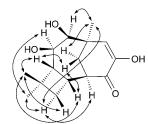


Fig. 2. Key ROESY correlations of 1

H-C(1), H-C(2), H-C(3), H-C(5), H-C(8), H-C(9), Me(14), and Me(15) possessed β -, α -, α -, α -, α -, β -, β -, and α -orientations, respectively. On the basis of the above evidence, the structure of **1** was deduced as 2,3,6-trihydroxycaryol-5-en-7-one.

Table. NMR Spectral Data of 1 and 2. Measured in $CDCl_3$; δ in ppm, J in Hz.

	1		2	
	$\delta(\mathrm{H})^{\mathrm{a}})$	$\delta(C)^{b})$	$\delta(\mathrm{H})^{c})$	$\delta(C)^d)$
H-C(1)	2.46 (<i>dd</i> , <i>J</i> = 11.6, 11.6)	47.6 (d)	1.82 - 1.89 (m)	49.9 (d)
$H-C(2)$ or $CH_2(2)$	4.18 (dd, J = 11.6, 1.2)	70.1(d)	1.58 - 1.65 (m),	22.2 (t)
			1.42 - 1.50 (m)	
$H-C(3)$ or $CH_2(3)$	3.68 (d, J = 1.2)	81.6(d)	1.20 - 1.29(m),	37.9 (<i>t</i>)
			1.12 - 1.19 (m)	
C(4)		37.7 (s)		33.5 (s)
$H-C(5)$ or $CH_2(5)$	5.84 <i>(s)</i>	123.5(d)	1.96 (dd, J = 13.0, 9.3),	47.2 (<i>t</i>)
			0.08 - 1.03 (m)	
C(6) or $H-C(6)$		146.3 (s)	4.45 - 4.51 (m)	67.8 (<i>d</i>)
C(7) or $H-C(7)$		198.2 (s)	5.36 - 5.43(m)	125.3(d)
H-C(8) or $C(8)$	2.59 - 2.66 (m)	44.1 (d)		140.8 (s)
H-C(9)	2.80 - 2.89(m)	32.3(d)	3.21 - 3.30 (m)	38.3 (d)
CH ₂ (10)	1.72 - 1.78 (m),	35.5(t)	1.97 (t, J = 10.7),	36.0(t)
	1.57 (dd, J = 12.3, 9.7)		1.67 - 1.74 (m)	
C(11)		32.4(s)		34.7(s)
CH ₂ (12)	2.14 (d, J = 5.3),	32.8(t)	2.21 - 2.28 (m),	35.2(t)
	1.82 (dd, J = 6.5, 5.3)		1.36 (br. $d, J = 12.5, 2.0$)	
Me(13)	1.22(s)	28.9(q)	1.05 (s)	28.2(q)
Me(14)	1.18 (s)	31.2(q)	0.96(s)	24.2(q)
Me(15)	0.93 (s)	25.3(q)	1.22(s)	30.3(q)

^a) Recorded at 400 MHz. ^b) Recorded at 125 MHz. ^c) Recorded at 300 MHz. ^d) Recorded at 75 MHz; multiplicities inferred from DEPT and HMQC experiments.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 200–300 mesh, Qingdao Marine Chemical Inc., P. R. China) and Sephadex LH-20 (Amersham Biosciences, Uppsala, Sweden); TLC monitoring, visualization by heating the SiO₂ plates sprayed with 10% H₂SO₄ in EtOH. Optical rotations: Horiba SEPA-300 digital polarimeter. UV Spectra: Shimadzu UV-210 spectrometer; λ_{max} (log ε) in nm. IR Spectra: Bruker Tensor-27 spectrometer; with KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: Bruker AM-400 and DRX-500 spectrometers; δ in ppm, J in Hz. MS: VG Autospec-3000 and API QSTAR-Pulsar-1 spectrometer; in m/z (rel. int.).

Mushroom Material and Culture. The fungus *C. junghuhnii* was isolated from the tissue culture of its fruiting bodies collected at Gaoligong Mountains, Yunnan Province, P. R. China, in July 2006, and identified by Prof. *Mu Zang*, Kunming Institute of Botany, Chinese Academy of Sciences (CAS). The voucher specimen was deposited with the Herbarium of the Kunming Institute of Botany, CAS. Culture medium: potato (peeled) 200 g, glucose 20 g, KH_2PO_4 3 g, $MgSO_4$ 1.5 g, citric acid 0.1 g, and thiamine hydrochloride 10 mg in 1 l of deionized H_2O . The pH was adjusted to 6.5 before autoclaving, and the fermentation was carried out on a shaker at 25° and 150 rpm for 20 d.

Extraction and Isolation. The whole culture of *C. junghuhnii* (201) was filtered, and the filtrate was extracted four times with AcOEt. The org. layer was concentrated *in vacuo* to give a crude extract (40 g),

and the residue was subjected to CC (SiO₂; CHCl₃/MeOH gradient system) to give ten fractions. The fraction (665 mg) eluted with CHCl₃/MeOH (95:5, v/v) was subjected to repeated CC (*Sephadex LH-20*; CHCl₃/MeOH 1:1) to produce three subfractions *Fr. 1* (259 mg), *Fr. 2* (165 mg), and *Fr. 3* (15 mg). *Fr. 2* was further purified by CC (SiO₂; petroleum ether/AcOEt 4:1) and (*Sephadex LH-20*, CHCl₃/MeOH 1:1) to afford pure compound **1** (10 mg).

2,3,6-*Trihydroxycaryol-5-en-7-one* (=(1R,2R,5R,6R,7S,8R)-6,7*10*-*Trihydroxy-4*,4,8-*trimethyltricy-clo[6.3.1.0*^{2.5}*Jdodec-9-en-11-one*; **1**). Colorless oil. $R_{\rm f}$ (PE/acetone 2:1): 0.60. $[a]_{\rm D}^{2.5} = -52.1$ (c = 0.37, CHCl₃). UV (CHCl₃): 277 (3.65). IR (KBr): 3422, 2953, 2933, 1734, 1667, 1459, 1406, 1367, 1222, 1175, 1070, 1059, 1024, 984, 936. ¹H- and ¹³C-NMR (CDCl₃): *Table.* EI-MS: 266 (M^+), 248 ($[M - H_2O]^+$), 230 ($[M - 2 H_2O]^+$). HR-ESI-MS: 289.1420 ($[M + Na]^+$, $C_{15}H_{22}NaO_4^+$; calc. 289.1415).

This project was supported by the *Chinese Academy of Sciences* (KSCX1-YW-R-24; KSCX2-YW-G-025) and the *National Basic Research Program of China* (2009CB522300).

REFERENCES

- [1] X. L. Mao, 'The Macrofungi in China', Henan Science and Technology Press, Henan, 2000, p. 168.
- [2] J. K. Liu, Chem. Rev. 2006, 106, 2209.
- [3] J. K. Liu, Chem. Rev. 2005, 105, 2723.
- [4] D.-Z. Liu, F. Wang, T.-G. Liao, J.-G. Tang, W. Steglich, H.-J. Zhu, J.-K. Liu, Org. Lett. 2006, 8, 5749.
- [5] X.-D. Qin, Z.-J. Dong, J.-K. Liu, L.-M. Yang, R.-R. Wang, Y.-T. Zheng, Y. Lu, Y.-S. Wu, Q.-T. Zheng, *Helv. Chim. Acta* 2006, 89, 127.
- [6] D.-Q. Luo, H.-J. Shao, H.-J. Zhu, J.-K. Liu, Z. Naturforsch., C 2005, 60, 50.
- [7] C. J. Barrow, J. W. Blunt, M. H. G. Munro, Aust. J. Chem. 1988, 41, 1755.

Received July 29, 2008