

Article

COI1-regulated hydroxylation of jasmonoyl-L-isoleucine impairs Nicotiana attenuata's resistance to the generalist herbivore Spodoptera litura

Ji Luo, Kun Wei, Shuanghua Wang, Weiye Zhao, Canrong Ma, Christian Hettenhausen, Jinsong Wu, Guoyan Cao, Guiling Sun, Ian T. Baldwin, Jianqiang wu, and Lei Wang

J. Agric. Food Chem., Just Accepted Manuscript • DOI: 10.1021/acs.jafc.5b06056 • Publication Date (Web): 17 Mar 2016

Downloaded from http://pubs.acs.org on March 24, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

COI1-regulated hydroxylation of jasmonoyl-L-isoleucine impairs *Nicotiana attenuata*'s resistance to the generalist herbivore *Spodoptera litura*

Ji Luo^{1,4*}, Kun Wei^{2*}, Shuanghua Wang^{1,4}, Weiye Zhao¹, Canrong Ma^{1,4}, Christian
Hettenhausen¹, Jinsong Wu¹, Guoyan Cao¹, Guiling Sun¹, Ian T. Baldwin³, Jianqiang Wu^{1#}
and Lei Wang^{1#}

¹Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

² State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

³ Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena 07745, Germany

⁴ University of Chinese Academy of Sciences, Beijing 100049, China

* These authors contributed equally

Corresponding authors:

Lei Wang

Phone: +86-871-65229552, fax: +86-871-65229562, Email: leiwang@mail.kib.ac.cn

Jianqiang Wu

Phone/Fax: +86-871-65229562, Email: wujianqiang@mail.kib.ac.cn

ABSTRACT

2	The phytohormone jasmonoyl-L-isoleucine (JA-Ile) is well known as the key
3	signaling molecule that elicits plant defense responses after insect herbivory. Oxidation,
4	which is catalyzed by the cytochrome P450s of the CYP94 family, is thought to be one of the
5	main catabolic pathways of JA-Ile. In this study, we identified four CYP94B3 homologues in
6	the wild tobacco plant Nicotiana attenuata. Individually silencing the four homologues
7	revealed that NaCYP94B3 like-1 and NaCYP94B3 like-2, but not NaCYP94B3 like-3 and
8	NaCYP94B3 like-4, are involved in the C-12-hydroxylation of JA-Ile. Simultaneously
9	silencing three of NaCYP94B3 like genes, NaCYP94B3 like-1, 2, and 4 in the
10	VIGS-NaCYP94B3s plants doubled herbivory-induced JA-Ile levels and greatly enhanced
11	plant resistance to the generalist insect herbivore, Spodoptera litura. The poor larval
12	performance was strongly correlated with the high concentrations of several JA-Ile-dependent
13	direct defense metabolites in VIGS-NaCYP94B3s plants. Furthermore, we show that the
14	abundance of 12-hydroxy-JA-Ile was dependent on JA-Ile levels as well as COI1, the
15	receptor of JA-Ile. COI1 appeared to transcriptionally control NaCYP94B3 like-1 and 2 and
16	thus regulates the catabolism of its own ligand molecule, JA-Ile. These results highlight the
17	important role of JA-Ile degradation in jasmonate homeostasis and provide new insight into
18	the feedback regulation of JA-Ile catabolism. Given that silencing these CYP94 genes did not
19	detectably alter plant growth and highly increased plant defense levels, we propose that
20	CYP94B3 genes can be potential targets for genetic improvement of herbivore-resistant crops

- 23 **KEYWORDS:** JA-Ile, catabolism, defense, plant-insect interaction, cytochrome P450,
- 24 Nicotiana attenuata, Spodoptera litura

INTRODUCTION

27	During a long-term co-evolutionary process, plants have evolved sophisticated and
28	effective mechanisms to defend themselves against herbivore attack. Herbivory induces the
29	production of many defenses including toxic secondary metabolites and defensive proteins in
30	plants, which counteract herbivore attack. Among these defenses, many are positively
31	regulated by the jasmonates $^{l, 2}$. Jasmonates commonly refer to jasmonic acid (JA), as well as
32	to its precursors and metabolites derived from the oxylipin biosynthesis pathway. During
33	herbivore feeding, the wounding rapidly elicits plants JA synthesis, and in some plants (but
34	not all), certain components in herbivore oral secretions, such as fatty acid-amino acid
35	conjugates (FACs), can be recognized and thus further amplifies the wound-induced JA ³ .
36	The biosynthesis of JA starts with the release of linolenic acid from chloroplast
37	membranes. Following reactions catalyzed by 13-LIPOXYGENASE (13-LOX),
38	ALLENE-OXIDE SYNTHASE (AOS), and ALLEN-OXIDE CYCLASE (AOC),
39	12-oxo-phytodienoic acid (OPDA) is synthesized and then transported to the peroxisomes.
40	Here, OPDA is converted to JA by OPDA REDUCTASE (OPR) and a β -oxidase complex ⁴ .
41	JA can further be conjugated with amino acids, particularly Ile (forming JA-Ile), a reaction
42	catalyzed by JASMONATE-RESISTANT1 (JAR1) ⁵ . The receptor of the bioactive hormone
43	JA-Ile is a F-box protein, CORONATINE-INSENSITIVE1 (COI1) ⁶ , which is a part of an E3
44	ubiquitin ligase SCF ^{COII} complex ^{7 8 9} . Briefly, in the absence of JA-Ile, the JASMONATE
45	ZIM-DOMAIN (JAZ) repressor proteins bind MYC2, an important transcript factor in JA
46	signaling, and repress MYC2 activity. In response to internal or external cues, JA-Ile is
47	synthesized by JAR1 and specifically binds to the JAZ-COI1 co-receptor complex. This

48	binding event facilitates the ubiquitination of JAZs by SCF ^{COII} and leads to degradation of
49	JAZs through the 26S proteasome-mediated pathway. JA-Ile functions as a signaling
50	molecule and induces the production of many defenses including secondary metabolites and
51	proteins ^{10, 11} , such as glucosinolates ¹² , nicotine ¹³ , trypsin proteinase inhibitors (TPIs) ¹⁴ , and
52	17-hydroxygeranyllinalool diterpenoid glycosides (HGL-DTGs) ¹⁵ .
53	Although highly increased JA is required to deploy defense against herbivores, the
54	catabolism of jasmonates is also necessary for balancing defense and growth 16, 17.
55	Exogenously applied jasmonates can enhanced defense but compromise plant fitness ¹⁸ .
56	Similarly, when Arabidopsis was repeatedly wounded, its growth was highly stunted, due to
57	the wound-induced accumulation of JA 17 . Previously, two JA-Ile catabolic pathways have
58	been reported. One is mediated by JASMONOYL-L-ISOLEUCINE HYDROLASE 1 (JIH1),
59	which was first identified in the wild tobacco Nicotiana attenuata, catalyzing direct
60	hydrolysis of JA-Ile to JA. The JIH1 gene-silenced plants have increased JA-Ile levels after
61	simulated herbivory and enhanced resistance to the specialist <i>Manduca sexta</i> and generalist
62	Spodoptera littoralis insects, compared with wild-type (WT) plants ¹⁹ . The other is
63	cytochrome P450 CYP94 subfamily-mediated hydroxylation and carboxylation of JA-Ile.
64	Three members of CYP94 subfamily, CYP94B1, CYP94B3 and CYP94C1, initially
65	characterized in Arabidopsis, sequentially oxidize JA-Ile to hydroxyl-(12OH-JA-Ile) and
66	dicarboxy-(12COOH-JA-Ile) derivatives ^{20, 21} . The CYP94 family genes have been found in
67	most land plants, including non-vascular plants (e.g., <i>Physcomitrella patens</i>) ²² . CYP94B3
68	and CYP94B1 coordinately govern the majority (>95%) of 12-hydroxylation of JA-Ile in
69	wounded arabidopsis leaves ²³ . Compared with JA-Ile, 12OH-JA-Ile is less active in

70	promoting COI1-JAZ interactions, although this oxidized derivative maintains some activity
71	as a receptor ligand ²⁰ ; in contrast, 12COOH-JA-Ile is inactive in promoting COI1-JAZ
72	interactions ^{23, 24} . CYP94B3- and CYP94B1-overexpressing plants displayed phenotypes
73	indicative of JA-Ile deficiency, including defects in male fertility, resistance to
74	jasmonate-induced growth inhibition ^{20, 23} . The functions of some CYP94s in pathogen
75	resistance have been demonstrated. It was reported that cyp94b3 mutants are more
76	susceptible to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv tomato
77	DC3000, suggesting the possibility that increased JA-Ile content compromises host resistance
78	to this pathogen by suppressing the salicylate-mediated immunity ²⁵ . In addition,
79	CYP94B3-overexpressing plants showed impaired resistance to the necrotrophic pathogen
80	Botrytis cinerea, most likely due to reduced JA-Ile levels, and thus strongly impaired defense
81	gene induction ²⁴ . Despite causing JA-Ile over-accumulation due to impaired oxidation,
82	cyp94b1b3c1 triple mutants had negligible changes in resistance to B. cinerea, which was
83	associated with enhanced JAZ repressor transcript levels ²⁴ . However, the roles and
84	consequences of JA-Ile oxidation in plant-herbivore interaction remain largely unexplored.
85	N. attenuata is an annual wild tobacco that inhabits the western North America. It occurs
86	ephemerally in large populations after perceiving certain unknown germination cues in wood
87	smoke generated by wild fires. As a consequence of this particular germination behavior, N.
88	attenuata chases fires in ecological time and has evolved to grow in habitats that share most
89	of the same selection pressures that agricultural plants face: a large unpredictable herbivore
90	community. Many molecular tools, including transformation systems and virus-induced gene
91	silencing (VIGS), have been well developed. These all make <i>N. attenuata</i> a very attractive

system for studying plant resistance to insects $^{l\delta}$.

Here, we identified four *N. attenuata CYP94B3 like* genes and examined their function in plant defense against the lepidopteran herbivore *Spodoptera litura*. Three of four *CYP94B3 like* genes were transcriptionally induced by wounding and simulated herbivore attack and their independent silencing revealed that two had JA-Ile hydroxylation activity. These two homologues were simultaneously silenced and the silenced plants were more resistant to the generalist herbivore *S. litura* due to elevated JA-Ile levels, which in turn elicited the accumulation of defense-related metabolites. We further found that JA-Ile hydroxylation is transcriptionally regulated by the receptor COI1. The impaired catabolism of JA-Ile in *COII* knock-down plants showed a prolonged JA-Ile accumulation pattern. These results reveal the critical role of *CYP94B3 like* genes in maintaining JA-Ile homeostasis, and thus are an important part of the plant defense network against herbivore attack. We also propose that these genes could be new targets of genetic improvement of insect resistant crops using breeding or transgene technology.

MATERIALS AND METHODS

Plant growth and Spodoptera litura feeding assay

N. attenuata seeds that were originally collected from its native habitat in Great Basin desert, Utah (USA), and had been inbred for 31 generations were used for the experiments. Seed germination and plant growth were conducted as described previously²⁶. iraoc²⁷, irjar4/6¹⁰, and ircoi1²⁸ plants were generated as described. Eggs of Spodoptera litura were obtained from Beijing Genralpest Company (http://genralpest.b2b.hc360.com/) and kept in a

growth chamber at 26°C/16 h light, 24°C/8 h darkness until the larvae hatched. Eighteen to 21 freshly hatched larvae were placed individually on different plants, and larval masses were measured on day 11 and 15.

Isolation of full-length cDNAs of CYP94B3 homologues in N. attenuata

The protein sequences of AtCYP94B3 and AtCYP94B1were used as queries to search the *N. attenuata* genomic sequence database (Baldwin et al., unpublished data). Based on the sequence similarities, the putative full length cDNAs of *NaCYP94B3 like-1, -2, -3, -4* were amplified and sequenced (GenBank accession numbers KT355399, KT355400, KT355401, and KT355400, respectively). The primers used are listed in Table S1.

Jasmonate syntheses and plant treatments

JA-Ile and JA-¹³C₆-Ile were synthesized using JA, Ile, and ¹³C₆-Ile²⁹. 12OH-JA-Ile was synthesized as following: to the solution of racemic mixture 2-(2-(5-hydroxypent-3-enyl)-3-oxocyclopentyl) acetic acid (Olchemim, Cezch), L-isoleucine-2-d₁ (C/D/N Isotopes Inc., https://www.cdnisotopes.com) and O-(7-aza-1H-benzotriazol-1-yl)-N, N, N', N'-tetramethyluronium hexafluorophosphate in tetrahydrofuran was triethylamine added slowly. Stirring was continued for 5 h at room temperature. The reaction mixture was concentrated in a vacuum to produce a brown-yellow oil. The resulting oil was purified by chromatography on silica gel with petroleum chloroform–methanol (5:1). The eluent yielded colorless 12OH-JA-Ile. Chemicals without specific description were all obtained from Sigma (http://www.sigmaaldrich.com).

S. litura larval oral secretions and regurgitants (OS) were collected with a pipette and

stored at -20 °C. For 'W+W', 'W+OS', 'W+OS+JA', or 'W+OS+JA-Ile' treatments, the leaf growing at node +1, which is one leaf position older than the source-sink transition leaf, was wounded by rolling a fabric pattern wheel over the leaf surface to produce standardized puncture wounds, and immediately after wounding, 20 µL of deionized H₂O (W+W), OS at a 1:5 dilution (W+OS), 1:5 diluted OS containing 10 µg of JA (W+OS+JA), or 1:5 diluted OS containing 10 µg of JA-Ile (W+OS+JA-Ile), were applied to wounds.

Quantitative real-time PCR assay (qPCR)

Total RNA was extracted from ground leaf samples using the TRIzol reagent (Invitrogen) following manufacturer's instructions. cDNA was synthesized from 500 ng of total RNA with RevertAidTM H Minus Reverse Transcriptase (Thermo Scientific). Quantitative PCRs were performed by SYBR-green analysis using *N. attenuata actin2* gene as an internal standard, with the protocol described before³⁰.

Generation and Characterization of VIGS Plants

PCR was used to generate fragments of *NaCYP94B3 like-1*, -2, -3, and -4 from *N. attenuata*. Primers used for VIGS construction are listed in Table S1. The obtained PCR fragments were first cloned into pMD18-T vector (Takara) and sequenced. Plasmids with correct insertion were digested with BamH I and Hind III; and the resulting fragments were cloned into the pTV00 vector digested with the same enzymes. The *A. tumefaciens* (strain GV3101)—mediated transformation procedure for VIGS was described previously³¹. To monitor the progress of VIGS, we simultaneously silenced another set of plants with a construct specific for *phytoene desaturase* (*NaPDS*), resulting in visible bleaching of green

tissues. When the leaves of *NaPDS*–silenced plants sufficiently bleached (~6 weeks after germination), leaves of *NaCYP94B3* likes-silenced (VIGS-NaCYP94B3s), and empty vector–inoculated (VIGS-EV) plants were used for experiments.

Jasmonate analyses using HPLC-MS/MS

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Approx. 200 mg of leaf tissue of each sample were ground in liquid nitrogen. Phytohormones were extracted with 1 mL of ethyl acetate spiked with 100 ng of D₅-JA (2, 4, 4-d₃; acetyl-2, 2-d₂, C/D/N Isotopes Inc.), 20 ng of JA-¹³C₆-Ile as the internal standards. After vortexing for 10 min, the organic phase was obtained by centrifugation at 16100 g for 15 min at 4°C. Samples were evaporated to dryness in a vacuum concentrator (Eppendorf) under reduced pressure at 30°C. Leaf samples were then resuspended in 600 μL of methanol: water (70: 30, v/v), and centrifuged at 16100 g for 15 min at 4°C. The resulting supernatants were directly injected in to a Shimadzu 8040 HPLC-MS/MS system. Separation was achieved on a Shimadzu pack XR-ODS column (2.0mmi.d, 75 mm, Shimadzu). Formic acid (0.05%) and ammonium formate (5 mM) in water (A) and methanol (B) were employed as the mobile phases: 0 to 0.01 min, 20% B; 0.01 to 8.0 min, 20% to 95% B; 8.0 to 8.1 min, 20% B. The mobile phase flow rate was 0.3 mL min⁻¹. The column temperature was maintained at 50 °C. ESI was operated in the negative ionization mode. The instrument parameters were optimized by infusion experiments with pure standards. The ion spray voltage was maintained at -4,500 eV. The heating block temperature was set at 500 °C. The DL temperature was set at 300 °C. Nebulizing gas was set at 3 L min⁻¹, drying gas flow at 15 L min⁻¹, and collision gas at 230 kPa. Multiple reaction monitoring was used to monitor analytic parent ions to product ions. Both Q1 and Q3 quadrupoles were maintained at unit resolution. LabSolutions main software

(Shimadzu) was used for data acquisition and processing. Linearity in ionization efficiencies was verified by analyzing dilution series of standard mixtures. Quantities of phytohormones were calculated according to the ratios of their ion intensities and according to their respective internal standards. For 12OH-JA-Ile, JA-¹³C₆-Ile was used as the internal standard. All quantifications were corrected according to the sample dilution and leaf masses used. All extractions were performed using 3-5 biological replicates.

Analysis of direct defense traits

Nicotine, chlorogenic acid, and diterpene glycosides were analyzed by HPLC as described previously 32 , except that 100 mg of tissue were used. After centrifuging for 10 min at 13200 g, the supernatants were used for analysis. TPI activity was analyzed using a radial diffusion activity assay as described 33 .

RESULTS

Cloning of AtCYP94B3 homologues from N. attenuata

To clone the homologues of Arabidopsis AtCYP94B3 and AtCYP94B1, two enzymes hydroxylating JA-Ile^{20, 23}, we searched the *N. attenuata* genomic sequence database (Baldwin et al., unpublished data) using the protein sequences of AtCYP94B3 and AtCYP94B1 as queries. Totally four candidates, named NaCYP94B3 like-1, -2, -3, and -4, respectively, were obtained. The putative full length cDNAs of *NaCYP94B3 like-1*, -2, -3 and -4 were amplified directly with reverse transcription PCR. NaCYP94B3 like-1, -2 and -4 were relatively similar: the putative protein sequence identities between NaCYP94B3 like-1 and -2, -1 and -4, and -2 and -4 were 97.1, 81.0, and 80.3%, respectively, while the identities between NaCYP94B3 like-3 and NaCYP94B3 like-1, -2, and -4 were only 54.0, 53.7, and 54.0%, respectively (Figure S1). Their protein sequences, together with other AtCYP94B3- and AtCYP94B1-like proteins from some Solanaceous species and all members of the Arabidopsis CYP94

201	subfamily were phylogenetically analyzed. Compared to the Arabidopsis CYP94B3, the
202	putative protein sequences identities of NaCYP94B3 like-1, -2, -3 and -4 were 60.0, 59.4,
203	53.0, and $59.3%$, respectively; compared to the pepper CaCYP450A, the identities were 87.0 ,
204	87.4, 55.9, and 78.0%, respectively (Figure S1). The four NaCYP94B3 like candidates
205	clustered closely with AtCYP94B1, B2 and B3. Among them, NaCYP94B3 like-1, -2, -3 and
206	-4 are phylogenetically close to AtCYP94B1, B2, and B3, while NaCYP94B3 like-3 is closer
207	to AtCYP94B2 (Figure S1). This result suggests that NaCYP94B3 like-1, -2, -3 and -4 may
208	be the homologues of Arabidopsis CYP94B1, B2 and B3 and hydroxylate JA-Ile.
209	NaCYP94B3 like-1 and -2 transcripts are strongly induced by wounding and simulated
210	herbivore feeding
211	To investigate the role of JA-Ile hydroxylation in plant-herbivore interaction, we first
212	examined the accumulation pattern of 12OH-JA-Ile. N. attenuata leaves were treated with
213	mechanical wounding (W+W) or simulated S. litura feeding treatment (W+OS). Similar to
214	JA and JA-Ile, 12OH-JA-Ile was transiently induced by W+W: the levels increased quickly
215	and reached the peak level at 2 h; W+OS induced nearly 3-fold more 12OH-JA-Ile than did
216	W+W (Figure 1A), indicating that hydroxylation of JA-Ile is an important process in a plant's
217	response to insect feeding. Additionally, the transient accumulation pattern of 12OH-JA-Ile
218	suggests that it is not a stable JA metabolite and it might be quickly catabolized.
219	As 12OH-JA-Ile levels are rapidly induced by simulated S. litura feeding, we supposed
220	that the genes encoding enzymes involved in JA-Ile hydroxylation are induced by wounding
221	and their expression levels can be amplified by adding OS to wounds. As expected, W+W
222	highly induced NaCYP94B3 like-1 and -2 transcripts: NaCYP94B3 like-1 reached over
223	2000-fold induction 3 h after the treatment (Figure 1B); NaCYP94B3 like-2 reached over
224	1000-fold induction at 1 h after wounding (Figure 1C). W+OS amplified the W+W-induced

225	transcriptional responses: NaCYP94B3 like-1 and NaCYP94B3 like-2 expression levels were
226	2.5 and 1.5 times of those induced by W+W (Figure 1B, 1C), implying that NaCYP94B3
227	like-1 and -2 have functions in plant-herbivore interactions. However, NaCYP94B3 like-3 and
228	-4 transcripts were only slightly induced after these treatments: W+W at most induced
229	NaCYP94B3 like-3 and -4, 4- and 2-fold, respectively; W+OS induced NaCYP94B3 like-3
230	less than 6-fold and NaCYP94B3 like-4 only 2.5-fold (Figures 1D and 1E).
231	Specifically silencing NaCYP94B3 like-1 and NaCYP94B3 like-2 reduced the levels of
232	12OH-JA-Ile
233	To further examine whether NaCYP94B3 like-1, -2, -3 and -4 hydroxylate JA-Ile in
234	planta, gene-specific regions were selected and four VIGS vectors that independently silence
235	the four genes were constructed (Figure S2). The empty vector and the constructed vectors
236	were transformed into Agrobacterium to specifically silence these NaCYP94B3s using the
237	VIGS technology to generate VIGS-EV, VIGS-NaCYP94B3 like-1, -2, -3 and -4 plants.
238	As W+OS elicited high transcript levels, we tested the silencing efficiency 1 h after
239	W+OS treatment: the transcripts of the target genes in VIGS-NaCYP94B3 like-1, -2, -3 and
240	-4 plants were 88.2%, 69.4%, 80.1%, and 77.9% silenced, respectively (Figure 2A). We also
241	verified that the four genes were specifically silenced (Figure S3). Notably, no differences in
242	the growth and morphology were found between EV and plants silenced in these genes, even
243	when plants reached the flowering stage (Figure S4). Next, we tested whether silencing the
244	CYP94B3 homologues would also influence 12OH-JA-Ile and JA-Ile levels after the
245	treatments. One h after W+OS, 12OH-JA-Ile concentrations in VIGS-NaCYP94B3 like-1 and
246	-2 plants were 36.0% and 62.3% decreased, respectively, compared to the concentrations in

247	VIGS-EV plants; in VIGS-NaCYP94B3 like-3 and -4 plants, 12OH-JA-Ile contents were not
248	significantly lower than those in the VIGS-EV plants (Figure 2B). These results indicate that
249	NaCYP94B3 like-1 and NaCYP94B3 like-2 oxidize JA-Ile to 12OH-JA-Ile. Consistent with
250	the decreased 12OH-JA-Ile levels in plants silenced in NaCYP94B3 like-1 or -2, the JA-Ile
251	levels increased in these plants. As expected, the NaCYP94B3 like-1-silenced plants
252	accumulated slightly more (12%) JA-Ile, while NaCYP94B3 like-2-silenced plants
253	accumulated substantially more (38%) JA-Ile than did VIGS-EV plants (Figure 2C). JA-Ile is
254	derived from a minor portion of JA, as NaJAR4 and NaJAR6 simultaneously silenced plants
255	does not have elevated JA levels ¹⁰ . Consistently, although specifically silencing NaCYP94B3
256	<i>like-1</i> and -2 increased the levels of JA-Ile, the levels of JA were not affected (Figure S5).
257	These results suggested that impairing JA-Ile hydroxylation increases JA-Ile, but not JA,
258	accumulations in plants.

Simultaneously silencing NaCYP94B3 like-1, -2 and -4 enhances N. attenuata's resistance to the insect S. litura

As silencing *NaCYP94B3 like-1* and -2 both decreased the levels of hydroxylated JA-Ile, we speculated that these genes may act redundantly. A VIGS vector with a region that targeted the transcripts of *NaCYP94B3 like-1*, -2 and -4 (as *NaCYP94B3 like-4* shares high sequence similarity to *NaCYP94B3 like-1* and -2), but not *NaCYP94B3 like-3*, was constructed and transformed into *Agrobacterium* to generate silenced plants; the resulted plants were called VIGS-NaCYP94B3s (Figure S2). Again, no differences in the growth and morphology were found between VIGS-EV and VIGS-NaCYP94B3s plants (Figure S6). One h after W+OS treatment, *NaCYP94B3 like-1*, -2, -4 were 56.8%, 62.3%, and 43.9% silenced

in VIGS-NaCYP94B3s plants, respectively (Figure 3A). Importantly, VIGS-NaCYP94B3s
plants accumulated only 18.0% of the 12OH-JA-Ile levels detected in VIGS-EV plants
(Figure 3B), and JA-Ile levels in NaCYP94B3s plants were over 2 times that of those in
VIGS-EV plants (Figure 3C), indicating the NaCYP94B3 like-1- and -2-mediated
hydroxylation is a major turnover route of JA-Ile. Given that specifically silencing
NaCYP94B3 like-4 did not affect the levels of 12OH-JA-Ile, the impaired 12OH-JA-Ile levels
in simultaneously silenced plant mainly resulted from the silencing of NaCYP94B3 like-1 and
-2. Additionally, similar to the results of silencing the NaCYP94B3 homologues, the
simultaneous silencing the three NaCYP94B3 like homologues also did not affect JA levels
(Figure 3D).
To further examine the role of JA-Ile hydroxylation in plant-herbivore interaction, we
compared the larval masses of S. litura growing on VIGS-NaCYP94B3s and VIGS-EV plants

To further examine the role of JA-Ile hydroxylation in plant-herbivore interaction, we compared the larval masses of *S. litura* growing on VIGS-NaCYP94B3s and VIGS-EV plants. Eleven days after feeding on VIGS-NaCYP94B3s plants, the larvae were significantly smaller than those grown on VIGS-EV plants. After 15 days, the differences were more obvious: the average mass of the larvae on VIGS-NaCYP94B3s plants was only half of the average insect mass on VIGS-EV plants (Figure 4A). This result indicates that 12OH-JA-Ile does not activate plant defenses against this herbivore. We reasoned that the significantly decreased larval mass on VIGS-NaCYP94B3s plants resulted from the elevated JA-Ile levels. To test this, we use the same construct to silence NaCYP94B3 homologues in *irjar4/6* plants, which have highly decreased JA-Ile levels, and compared *S. litura* larval masses. When we silencing NaCYP94B3 homologues in the WT background, 14 days after feeding on VIGS-NaCYP94B3s plants, the larvae were significantly smaller than those grown on

VIGS-EV plants. In contrast, when we used the same construct in the <i>irjar4/o</i> background,
the larvae grown on these VIGS-NaCYP94B3s plants did not differ from those grown on
VIGS-EV plants (Figure S7A). Meanwhile, in the WT background, the JA-Ile and
12OH-JA-Ile levels of VIGS-NaCYP94B3s plants were over 1.5-fold higher and over 1-fold
lower than those of VIGS-EV plants, respectively. In the irjar4/6 background, the levels of
JA-Ile and 12OH-JA-Ile were not different between VIGS-EV and VIGS-NaCYP94B3s
plants (Figure S7B, C). These results indicate that the increased S. litura resistance in
NaCYP94B3s-silenced plants was caused by the elevated JA-Ile levels.

NaCYP94B3 homologues attenuates multiple herbivore-induced direct defenses

JA-Ile induces plants accumulating a number of secondary metabolites that directly suppress the performance of caterpillars ^{1, 10, 34}. To investigate whether the over-accumulation of JA-Ile caused by blocking JA-Ile hydroxylation induces defense-related secondary metabolites, we measured several direct defense traits in VIGS-NaCYP94B3s plants. As we expected, the three main direct defense traits, namely, TPI activity, nicotine contents, and HGL-DTGs levels, were all highly induced in VIGS-NaCYP94B3s plants. Three days after W+OS treatment, the TPI activity, total HGL-DTGs and nicotine levels in VIGS-NaCYP94B3s were 57.8%, 32.3%, and 50.1% (Figure 4B-D) higher than those in the VIGS-EV plants. Over-accumulation of these metabolites in VIGS-NaCYP94B3s plants accounted for the reduced performance of caterpillars on VIGS-NaCYP94B3s plants.

Accumulation of 12OH-JA-Ile requires JA-Ile and COI1

To gain insight into how herbivory-induced 12OH-JA-Ile accumulation is regulated, we

examined the JA, JA-Ile and 12OH-JA-Ile accumulation patterns in WT, iraoc, irjar4/6 and
ircoi1 plants, which have impaired JA biosynthesis ²⁷ , JA-Ile biosynthesis ¹⁰ , and JA
perception ²⁸ , respectively, after W+OS treatment. The JA levels in the four genotypes were
very different: At 1 h, WT plants showed highly increased JA contents after W+OS, while JA
levels in <i>iraoc</i> plants were strongly reduced to < 3% of the WT levels as the <i>iraoc</i> plants were
impaired in JA production; the JA levels in irjar4/6 plants were similar to those in WT plants,
and consistent with the previous report, JA level in <i>ircoi1</i> plants was ~30% of those in WT
plants ³⁵ (Figure 5A). In the case of JA-Ile: in WT plants, JA-Ile retained the transient
accumulation pattern that followed that of JA; at 1 h, JA-Ile levels in <i>iraoc</i> plants were also
strongly reduced to < 3% of WT levels and <i>irjar4/6</i> plants had only 30% of the JA-Ile
contents in WT plants; remarkably, although JA levels were very low in ircoi1 plants, the
JA-Ile levels in <i>ircoi1</i> plants increased to levels found in WT plants and the levels remained
high until 3 h when JA-Ile levels had returned to basal levels in WT plants, suggesting the
JA-Ile turnover pathway was somewhat blocked in <i>ircoi1</i> plants (Figure 5B). 12OH-JA-Ile
also transiently accumulated like JA and JA-Ile in WT plants, and compared with its levels in
WT plants, iraoc (< 1% at 1 h), irjar4/6 (< 14% at 1 h), and ircoi1 (< 16% at 1 h) all
exhibited strongly decreased 12OH-JA-Ile contents (Figure 5C). Thus, the production of
12OH-JA-Ile requires an intact JA-Ile biosynthesis and perception pathway.
We inferred that the reduced 12OH-JA-Ile levels in <i>irjar4/6</i> and <i>iraoc</i> plants resulted
from substrate limitations. To test this possibility, we exogenously applied JA and JA-Ile to
WT, iraoc, irjar4/6 and ircoi1 plants and measured 12OH-JA-Ile levels. When JA was
supplied to the wounds of the plants with OS (W+OS+JA). WT plants did not accumulate

more 12OH-JA-Ile than did W+OS, and similarly, exogenous JA supplementation did not
recover the accumulation of 12OH-JA-Ile in <i>irjar4/6</i> and <i>ircoi1</i> plants, even though <i>ircoi1</i>
plants had XXX times more JA-Ile than did WT plants (Figure 5D); JA only partly rescued
the 12OH-JA-Ile levels in <i>iraoc</i> plant, as the JA-Ile levels in <i>iraoc</i> plant were only half of
those in WT plant (Figure 5E). In contrast, exogenous treatments of JA-Ile increased the
12OH-JA-Ile levels (> 7 fold) in WT plant (Figure 5D). Importantly, JA-Ile also completely
recovered the 12OH-JA-Ile levels in <i>iraoc</i> and <i>irjar4/6</i> plants. However, JA-Ile could not
rescue the 12OH-JA-Ile levels in <i>ircoi1</i> plant (Figure 5D). Notably, exogenous application of
JA did not enhance JA-Ile levels in WT but elevated JA-Ile contents <i>iraoc</i> plants (Figure 6B),
and this was likely due to possibility that 1) the high levels of JA in these plants (induction by
W+OS treatment and supplementation of JA) saturated the mechanism of JA-Ile production;
2) the highly increased JA-Ile levels in <i>ircoi1</i> plants (Figure 6B) were resulted from the
decreased activity of CYP94B3s in these plants.
These results indicate that the biosynthesis of 12OH-IA-IIe is IA-IIe as well as

- These results indicate that the biosynthesis of 12OH-JA-Ile is JA-Ile as well as COI1-dependent.
- COI1 regulates JA-Ile hydroxylation by controlling the transcript levels of *NaCYP94B3*like-1 and *NaCYP94B3 like-2*
 - To further investigate whether 12OH-JA-Ile synthesis is transcriptionally regulated by COI1, we investigated the expression patterns of *NaCYP94B3 like-1* and *-2* in *ircoi1* plants, and found that the transcript levels of *NaCYP94B3 like-1* and *-2* were greatly decreased in *ircoi1* (Figure 6): At 1h after W+OS treatment, *NaCYP94B3 like-1* transcript levels were less than 20% of those in WT plants, and in addition the peak at 3 h was gone. Meanwhile,

NaCYP94B3 like-2 also accumulated only 12.1% of the transcript abundance of WT plant 1 h
after W+OS treatment. These results indicate that JA signaling regulates 12OH-JA-Ile
synthesis by activating the transcription of <i>NaCYP94B3-like-1</i> and <i>-2</i> .

A previous study indicated that COI1 positively regulates both jasmonate biosynthesis and JA-Ile metabolism ³⁵. Given that the hydrolysis of JA-Ile back to JA is another catabolic route of JA-Ile, we further investigated whether COI1 also regulates the transcription of *NaJIH1* (*jasmonoyl-L-isoleucine hydrolase 1*), the JA-Ile hydrolase ¹⁹. W+OS induced the transcripts of *NaJIH1* rapidly. At 2 h after W+OS, the level of *NaJIH1* was over 25-fold of that in untreated WT plants, whereas in *ircoi1* plants, W+OS only induced a maximal 5 fold increase of *NaJIH1* transcripts (Figure S8). Thus, JA signaling also regulates the transcript abundance of JA-Ile hydrolase NaJIH1. Taken together, the impairments of two main JA-Ile catabolic routes likely accounts for JA-Ile over-accumulation phenotype of *ircoi1* plants.

DISCUSSION

Plants are often challenged by various inset herbivores. In plant defense against insects, the phytohormone JA and JA-Ile play important roles ^{1, 10, 11}. Here we show that NaCYP94B3s are central in catabolizing JA-Ile, thus is an important regulator in maintaining JA-Ile homeostasis.

NaCYP94B3s are important for the homeostasis of the herbivory-induced defense signal molecule, JA-Ile

In response to herbivore attack, plant quickly synthesis the signal molecule, JA-Ile, which elicits induce defenses¹¹. However, prolonged or over- accumulation of JA-Ile is

unnecessary and even causes growth retardation ¹⁶ . Oxidation and conjugation with sugar ar	e
common inactivation routes for phytohormones, and oxidation is mainly carried out by	
$P450s^{36}$.	

N. attenuata employs CYP94B3 homologues to tailor the levels of herbivore-induced signal, JA-Ile. Four genes in N. attenuata (NaCYP94B3 like-1, 2, 3 and 4) were found to have high homologies with Arabidopsis CYP94B3s. In response to simulated S. litura attack, NaCYP94B3 like-1 and like-2 were strongly induced, while NaCYP94B3 like-3 and -4 was only slightly or not induced. Independently silencing the four genes further indicates both NaCYP94B3 like-1 and -2 hydroxylate JA-Ile. Simultaneously silencing NaCYP94B3 like-1 and -2 reduced the levels of 12OH-JA-Ile to less than 20% of those in control plants. Thus, NaCYP94B3 like-1 and -2 govern the majority of JA-Ile hydroxylation. Simultaneously silenced plants accumulated 1 fold more JA-Ile than did control plants; this clearly indicates that 12-hydroxidation by these P450s is the main turnover route of JA-Ile. A similar mechanism has been identified in Arabidopsis: double mutant of CYP94B1 and CYP94B3 lost the ability of producing 12OH-JA-Ile, and the expression of two CYPs, were coil-dependent^{20, 21}. It is possible that in eudicots, hydroxylation of JA-Ile is usually carried out by an evolutionarily conserved small CYP gene family.

In *N. attenuata*, another important turnover route of JA-Ile is hydrolyzing JA-Ile back to JA by jasmonoyl-L-isoleucine hydrolase 1 (NaJIH1). *NaJIH1*-silenced plants accumulated about 2-fold higher JA-Ile and were also more resistant to herbivores ¹⁹. Whether there are any other JA-Ile catabolic pathways would be very interesting to explore.

In response to simulated herbivory, plants synthesize large amount of JA: the peak level

of JA is about 1.2 μg g⁻¹ FW. JA is quickly catabolized: 2 h after W+OS elicitation, its levels are almost back to basal levels (Figure 5A). Notably, JA-Ile is a minor form of JA metabolites. Only about 1/3 of the JA pool is converted to JA-Ile, as the peak level of JA-Ile is about 0.4 μg g-1 FW. It is likely that most of the elicited JA is metabolized to compounds other than JA-Ile, such as hydroxylated jasmonates 12OH-JA, 12-HSO4-JA and 12-O-Glc-JA, which are constituents of various organs of many plant species. In tomato's response to wounding, these compounds all accumulate differentially and usually to much higher concentrations than does JA³⁷. Although we did not measure the profiles of these hydroxylated jasmonates after simulated herbivore responses in *N. attenuata*, we speculate they are also main metabolites of JA. Whether these metabolites have any functions in plant-herbivore interaction remains to be explored.

JA signaling regulates the metabolism of JA-Ile

The F-box protein COI1 is involved in jasmonate perception^{8, 9, 38, 39}. In addition, COI1 also has regulatory activity on oxylipin biosynthesis: In Arabidopsis, the transcripts of JA-Ile biosynthesis enzymes are controlled by COI1⁴⁰ and NaCOI1 is required for the transcriptional induction of JA biosynthesis genes, including *NaAOS*, *NaAOC*, *NaOPR3*, *NaJAR4* and *NaACX1* in *N. attenuata*³⁵. It was speculated previously that COI1 also regulates the metabolism of JA-Ile³⁵. In *NaCOI1* knock-down plants (*ircoi1*), JA-Ile levels were higher and the elicited peak more prolonged than in WT plants, while the levels of JA were much lower ³⁵. *In vivo* substrate feeding experiments in *N. attenuata* further demonstrated that JA-Ile accumulation pattern in *ircoi1* is not the result of altered substrate availability, i.e. of JA and/or Ile, but is due to an over 6-fold decrease in JA-Ile turnover ³⁵.

In this study, we found that JA signaling regulates the turnover of JA-Ile by activating the transcription of JA-Ile catabolic enzymes. Both hydroxylation (*NaCYP94B3 like-1* and *-2*) and hydrolysis (*NaJIH1*) enzymes are transcriptionally controlled by JA signaling, given that they all had very low level of transcripts in *ircoi1* plants. Clearly, the low metabolic rate of JA-Ile is the reason for the increased and prolonged accumulation of JA-Ile in *ircoi1* plants. The results in *N. attenuata* further indicate that after herbivore feeding, JA signaling fine-tunes the dynamics of the jasmonate response by regulating the dynamics of the transcription of JA biosynthesis and catabolism enzymes. Considering COI1 is an F-box protein, it may not regulate the transcription of jasmonate biosynthesis and metabolism genes directly. Possibly, the COI1 downstream transcription factor, MYC2, is the direct regulator of these genes.

CYP94B3 homologues are potential targets for genetic engineering of

herbivore-resistant crops

Silencing the transcripts of *NaCYP94B3 like-1* and *-2* resulted in highly resistant *N. attenuata* plants to the generalist herbivore *S. litura*. Consistently, these plants produced more defense-related metabolites: nicotine, HGL-DTGs, and TPIs, and these were correlated with the doubled JA-Ile levels. Although we did not test the susceptibility of the silenced plant to other insects, such as the specialist insect *M. sexta*, elevated defense levels are expected to generally increase resistance to many insect herbivore species⁴¹. So far, most identified genes involved in defenses responses against insect herbivore play positive roles; in contrast, our results indicate that silencing or knocking out *CYP94B3*s enhances plant resistance to insect herbivores. Importantly, under our cultivation conditions, we did not detect abnormal growth

of the plants silenced in *NaCYP94B3*s. We speculate that either residual levels of these enzymes' activity or other non-silenced *NaCYP94B3* homologues as well as NaJIH1 were sufficient to maintain JA/JA-Ile homeostasis under normal conditions. This is essential, as constitutively elevated JA and/or JA-Ile are known to suppress plant growth.

We propose that CYP94B3 homologues have potential values in generating herbivore-resistant plants by breeding or transgene methods. CRISPR/Cas9 and other genome editing technologies have started to become feasible for crop plants⁴²⁻⁴⁴, which usually generate gene knock-outs. Thus, using these new genome-editing technologies, knocking out the expression of *CYP94B3*s in crops could be done to examine whether these P450s could serve as new targets of crop improvement.

SUPPORTING INFORMATION

Phylogenetical analysis of CYP94 proteins (Figure S1), a multiple sequence alignment of the four NaCYP94B3 likes (Figure S2), independently silencing NaCYP94B3 likes by VIGS did not change JA levels (Figure S3), specifically silencing NaCYP94B3 likes by VIGS does not change plant morphology (Figure S4), independent silencing *NaCYP94B3 like* homologues does not change JA levels (Figure S5), simultaneously silencing NaCYP94B3 likes by VIGS did not change plant morphology (Figure S6), simultaneously silencing NaCYP94B3 homologues increased *S. litura* resistance is caused by elevated JA-Ile levels (Figure S7), COI1 regulates the transcript levels of *NaJIH1* (Figure S8), and list of primers (Table S1). This material is available free of charge via the Internet at http://pubs.acs.org.

ACKNOWLEDGEMENTS

Page 24 of 40

464	The authors thank Qiu,	Xiongxiong for	help in analysis	of the phytohormones,	Dr. Klaus

- Gase for searching CYP94B3 homologues. We also thank the Biotechnology Experimental
- 466 Center at the Kunming Institute of Botany, CAS, for supporting plant cultivation.

FUNDING

465

467

- This work was supported by the National Natural Science Foundation of China (NSFC,
- 469 31201527), the Strategic Priority Research Program of the Chinese Academy of Sciences (No.
- 470 XDB11050200), the Scientific Research Foundation for the Returned Overseas Chinese
- Scholars, State Education Ministry (to Lei Wang), NSFC 31470369, and the Knowledge
- Innovation Project of Chinese Academy of Sciences (to L.W.).

473 NOTES

The authors declare no competing financial interest.

475

476

REFERENCES

- 1. Kessler, A.; Halitschke, R.; Baldwin, I. T., Silencing the jasmonate cascade: induced
- plant defenses and insect populations. *Science* **2004**, *305*, 665-668.
- 479 2. Wang, L.; Wu, J., The essential role of jasmonic acid in plant-herbivore interactions -
- 480 using the wild tobacco *Nicotiana attenuata* as a model. J. Genet. Genomics 2013, 40,
- 481 597-606.
- 482 3. Halitschke, R.; Schittko, U.; Pohnert, G.; Boland, W.; Baldwin, I. T., Molecular
- 483 interactions between the specialist herbivore *Manduca sexta* (Lepidoptera, Sphingidae) and
- 484 its natural host *Nicotiana attenuata*. III. Fatty acid-amino acid conjugates in herbivore oral

- secretions are necessary and sufficient for herbivore-specific plant responses. *Plant Physiol.*
- **2001**, *125*, 711-717.
- 487 4. Wasternack, C.; Hause, B., Jasmonates: biosynthesis, perception, signal transduction and
- 488 action in plant stress response, growth and development. An update to the 2007 review in
- 489 Annals of Botany. Ann. Bot. 2013, 111, 1021-1058.
- 490 5. Staswick, P. E.; Tiryaki, I., The oxylipin signal jasmonic acid is activated by an enzyme
- that conjugates it to isoleucine in Arabidopsis. *Plant Cell* **2004**, *16*, 2117-2127.
- 492 6. Xie, D. X.; Feys, B. F.; James, S.; Nieto-Rostro, M.; Turner, J. G., COI1: an Arabidopsis
- gene required for jasmonate-regulated defense and fertility. *Science* **1998**, 280, 1091-1094.
- 494 7. Xu, L.; Liu, F.; Lechner, E.; Genschik, P.; Crosby, W. L.; Ma, H.; Peng, W.; Huang, D.;
- 495 Xie, D., The SCF^{COII} ubiquitin-ligase complexes are required for jasmonate response in
- 496 Arabidopsis. *Plant Cell* **2002**, *14*, 1919-1935.
- 8. Chini, A.; Fonseca, S.; Fernandez, G.; Adie, B.; Chico, J. M.; Lorenzo, O.;
- 498 Garcia-Casado, G.; Lopez-Vidriero, I.; Lozano, F. M.; Ponce, M. R.; Micol, J. L.; Solano, R.,
- The JAZ family of repressors is the missing link in jasmonate signalling. *Nature* **2007**, *448*,
- 500 666-671.
- 9. Thines, B.; Katsir, L.; Melotto, M.; Niu, Y.; Mandaokar, A.; Liu, G.; Nomura, K.; He, S.
- 502 Y.; Howe, G. A.; Browse, J., JAZ repressor proteins are targets of the SCF^{COII} complex
- during jasmonate signalling. *Nature* **2007**, *448*, 661-665.
- 10. Wang, L.; Allmann, S.; Wu, J.; Baldwin, I. T., Comparisons of LIPOXYGENASE3- and
- 505 JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic
- acid-amino acid conjugates play different roles in herbivore resistance of *Nicotiana attenuata*.

- 507 Plant Physiol. **2008**, 146, 904-915.
- 11. Kang, J. H.; Wang, L.; Giri, A.; Baldwin, I. T., Silencing threonine deaminase and JAR4
- 509 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca
- 510 *sexta. Plant Cell* **2006**, *18*, 3303-3320.
- 12. Mikkelsen, M. D.; Petersen, B. L.; Glawischnig, E.; Jensen, A. B.; Andreasson, E.;
- 512 Halkier, B. A., Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by
- defense signaling pathways. *Plant Physiol.* **2003**, *131*, 298-308.
- 13. Steppuhn, A.; Gase, K.; Krock, B.; Halitschke, R.; Baldwin, I. T., Nicotine's defensive
- function in nature. *PLoS Biol.* **2004**, *2*, 1074-1080.
- 516 14. Zavala, J. A.; Patankar, A. G.; Gase, K.; Hui, D.; Baldwin, I. T., Manipulation of
- endogenous trypsin proteinase inhibitor production in *Nicotiana attenuata* demonstrates their
- function as antiherbivore defenses. *Plant Physiol.* **2004**, *134*, 1181-1190.
- 519 15. Jassbi, A. R.; Gase, K.; Hettenhausen, C.; Schmidt, A.; Baldwin, I. T., Silencing
- 520 geranylgeranyl diphosphate synthase in *Nicotiana attenuata* dramatically impairs resistance
- 521 to tobacco hornworm. *Plant Physiol.* **2008**, *146*, 974-986.
- 16. Heinrich, M.; Hettenhausen, C.; Lange, T.; Wunsche, H.; Fang, J.; Baldwin, I. T.; Wu, J.,
- High levels of jasmonic acid antagonize the biosynthesis of gibberellins and inhibit the
- growth of *Nicotiana attenuata* stems. *Plant J.* **2013**, *73*, 591-606.
- 17. Zhang, Y.; Turner, J. G., Wound-induced endogenous jasmonates stunt plant growth by
- inhibiting mitosis. *PLoS One* **2008**, *3*, e3699.
- 18. Baldwin, I. T., Jasmonate-induced responses are costly but benefit plants under attack in
- native populations. *Proc. Natl. Acad. Sci. U. S. A.* **1998**, *95*, 8113-8118.

- 19. Woldemariam, M. G.; Onkokesung, N.; Baldwin, I. T.; Galis, I., Jasmonoyl-l-isoleucine
- 530 hydrolase 1 (JIH1) regulates jasmonoyl-l-isoleucine levels and attenuates plant defenses
- against herbivores. *Plant J.* **2012**, *72*, 758-767.
- 532 20. Koo, A. J.; Cooke, T. F.; Howe, G. A., Cytochrome P450 CYP94B3 mediates catabolism
- and inactivation of the plant hormone jasmonoyl-L-isoleucine. *Proc. Natl. Acad. Sci. U. S. A.*
- **2011**, *108*, 9298-9303.
- 21. Heitz, T.; Widemann, E.; Lugan, R.; Miesch, L.; Ullmann, P.; Desaubry, L.; Holder, E.;
- Grausem, B.; Kandel, S.; Miesch, M.; Werck-Reichhart, D.; Pinot, F., Cytochromes P450
- 537 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone
- Jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 2012, 287, 6296-6306.
- 539 22. Koo, A. J.; Howe, G. A., Catabolism and deactivation of the lipid-derived hormone
- jasmonoyl-isoleucine. Front. Plant Sci. 2012, 3, 19.
- 23. Koo, A. J.; Thireault, C.; Zemelis, S.; Poudel, A. N.; Zhang, T.; Kitaoka, N.; Brandizzi, F.;
- Matsuura, H.; Howe, G. A., Endoplasmic Reticulum-associated Inactivation of the Hormone
- Jasmonoyl-l-Isoleucine by Multiple Members of the Cytochrome P450 94 Family in
- 544 Arabidopsis. J. Biol. Chem. **2014**, 289, 29728-29738.
- 545 24. Aubert, Y.; Widemann, E.; Miesch, L.; Pinot, F.; Heitz, T., CYP94-mediated
- jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence
- responses to *Botrytis cinerea* infection. *J. Exp. Bot.* **2015**, *66*, 3879-3892.
- 548 25. Hwang, I. S.; Hwang, B. K., Role of the pepper cytochrome P450 gene CaCYP450A in
- defense responses against microbial pathogens. *Planta* **2010**, *232*, 1409-1421.
- 550 26. Krugel, T.; Lim, M.; Gase, K.; Halitschke, R.; Baldwin, I. T., Agrobacterium-mediated

- transformation of *Nicotiana attenuata*, a model ecological expression system. *Chemoecology*
- **2002**, *12*, 177-183.
- 553 27. Kallenbach, M.; Bonaventure, G.; Gilardoni, P. A.; Wissgott, A.; Baldwin, I. T.,
- 554 Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and
- identify jasmonate mutants in natural populations. *Proc. Natl. Acad. Sci. U. S. A.* **2012**, *109*,
- 556 E1548-1557.
- 28. Paschold, A.; Halitschke, R.; Baldwin, I. T., Co(i)-ordinating defenses: NaCOI1 mediates
- 558 herbivore- induced resistance in *Nicotiana attenuata* and reveals the role of herbivore
- movement in avoiding defenses. *Plant J.* **2007**, *51*, 79-91.
- 560 29. Kramell, R.; Schmidt, J.; Schneider, G.; Sembdner, G.; Schreiber, K., Synthesis of
- N-(Jasmonoyl)Amino Acid Conjugates. *Tetrahedron* **1988**, 44, 5791-5807.
- 562 30. Sun, H.; Hu, X.; Ma, J.; Hettenhausen, C.; Wang, L.; Sun, G.; Wu, J.; Wu, J.,
- Requirement of ABA signalling-mediated stomatal closure for resistance of wild tobacco to
- 564 *Alternaria alternata. Plant Pathol.* **2014**, *63*, 1070-1077.
- 31. Saedler, R.; Baldwin, I. T., Virus-induced gene silencing of jasmonate-induced direct
- defences, nicotine and trypsin proteinase-inhibitors in *Nicotiana attenuata*. J. Exp. Bot. **2004**,
- 567 *55*, 151-157.
- 568 32. Keinanen, M.; Oldham, N. J.; Baldwin, I. T., Rapid HPLC screening of
- jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in
- 570 *Nicotiana attenuata. J. Agric. Food Chem.* **2001**, 49, 3553-3558.
- 571 33. van Dam, N. M.; Horn, M.; Mares, M.; Baldwin, I. T., Ontogeny constrains systemic
- protease inhibitor response in *Nicotiana attenuata*. *J. Chem. Ecol.* **2001**, *27*, 547-568.

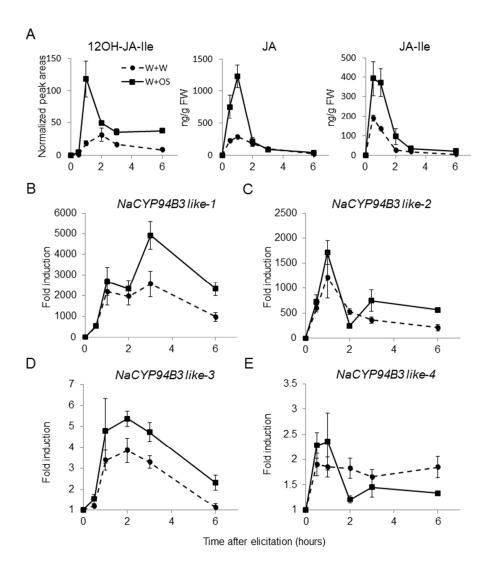
- 34. Heiling, S.; Schuman, M. C.; Schoettner, M.; Mukerjee, P.; Berger, B.; Schneider, B.;
- Jassbi, A. R.; Baldwin, I. T., Jasmonate and ppHsystemin regulate key Malonylation steps in
- 575 the biosynthesis of 17-Hydroxygeranyllinalool Diterpene Glycosides, an abundant and
- effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 2010, 22,
- 577 273-292.
- 578 35. Paschold, A.; Bonaventure, G.; Kant, M. R.; Baldwin, I. T., Jasmonate perception
- regulates jasmonate biosynthesis and JA-Ile metabolism: the case of COI1 in *Nicotiana*
- 580 attenuata. Plant Cell Physiol. **2008**, 49, 1165-1175.
- 36. Mizutani, M.; Ohta, D., Diversification of P450 genes during land plant evolution. *Annu.*
- 582 Rev. Plant Biol. **2010**, 61, 291-315.
- 583 37. Miersch, O.; Neumerkel, J.; Dippe, M.; Stenzel, I.; Wasternack, C., Hydroxylated
- 584 jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial
- switch-off in jasmonate signaling. *New Phytol.* **2008**, *177*, 114-127.
- 38. Sheard, L. B.; Tan, X.; Mao, H.; Withers, J.; Ben-Nissan, G.; Hinds, T. R.; Kobayashi, Y.;
- Hsu, F. F.; Sharon, M.; Browse, J.; He, S. Y.; Rizo, J.; Howe, G. A.; Zheng, N., Jasmonate
- perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. *Nature* **2010**, 468,
- 589 400-405.
- 590 39. Yan, J.; Zhang, C.; Gu, M.; Bai, Z.; Zhang, W.; Qi, T.; Cheng, Z.; Peng, W.; Luo, H.; Nan,
- 591 F.; Wang, Z.; Xie, D., The Arabidopsis CORONATINE INSENSITIVE1 protein is a
- jasmonate receptor. *Plant Cell* **2009**, *21*, 2220-2236.
- 593 40. Devoto, A.; Ellis, C.; Magusin, A.; Chang, H. S.; Chilcott, C.; Zhu, T.; Turner, J. G.,
- Expression profiling reveals *COII* to be a key regulator of genes involved in wound- and

- methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. *Plant*
- 596 *Mol. Biol.* **2005**, *58*, 497-513.
- 41. Wang, L.; Wu, J., The Essential Role of Jasmonic Acid in Plant-Herbivore Interactions -
- Using the Wild Tobacco Nicotiana attenuata as a Model. J. Genet. Genomics 2013, 40,
- 599 597-606.
- 42. Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D. P., Demonstration of
- 601 CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum
- and rice. *Nucleic Acids Res.* **2013**, *41*, e188.
- 43. Miao, J.; Guo, D. S.; Zhang, J. Z.; Huang, Q. P.; Qin, G. J.; Zhang, X.; Wan, J. M.; Gu, H.
- Y.; Qu, L. J., Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013, 23,
- 605 1233-1236.
- 44. Liang, Z.; Zhang, K.; Chen, K.; Gao, C., Targeted mutagenesis in Zea mays using
- TALENs and the CRISPR/Cas system. J. Genet. Genomics 2014, 41, 63-68.

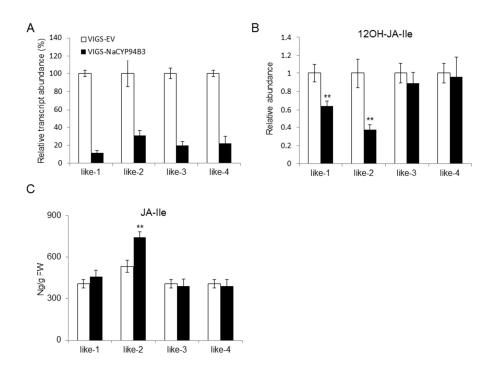
	TIDE		DTI	ON	TO
HIG	URE	CA	PH	U	1.7

Figure 1. Profiles of 12OH-JA-Ile, JA and JA-Ile contents in *N. attenuata* plants and 611 612 transcript levels of *NaCYP94B3-like* genes after W+W and W+OS elicitation. 613 Leaves were wounded with a fabric pattern wheel, and the resulting puncture wounds (W) 614 were immediately treated with 20µL of double-distilled H₂O (W+W) (dashed line, closed 615 diamonds) or 1:5-diluted S. litura oral secretions and regurgitants (W + OS) (solid lines, 616 closed squares). Leaf tissues were harvested after indicated times. Contents of jasmonates 617 12-hydroxy-jasmonyl-isoleucine (12OH-JA-Ile), jasmonic acid (JA) and jasmonyl-isoleucine 618 (JA-IIe) were determined using HPLC-MS/MS (A). Transcripts levels of NaCYP94B3 like-1 619 (B), NaCYP94B3 like-2 (C), NaCYP94B3 like-3 (D), and NaCYP94B3 like-4 (E) were quantified with qPCR. (n = 3 to 5; error bars represent \pm SE). 620 621 **Figure 2**. Specifically silencing of *NaCYP94B3 likes* by VIGS reduces 12OH-JA-Ile 622 accumulations. 623 Plants were inoculated with Agrobacterium harboring TRV constructs to obtain VIGS-EV, 624 VIGS-NaCYP94B3 like-1, VIGS-NaCYP94B3 like-2, VIGS-NaCYP94B3 like-3 and 625 VIGS-NaCYP94B3 like-4 plants. Leaves were wounded with a pattern wheel and puncture 626 wounds were immediately treated with 1:5-diluted S. litura oral secretions (OS), and leaf 627 tissues were harvested after 60 min. Silencing efficiency of NaCYP94B3 likes (A), contents 628 of 12OH-JA-Ile (B), and JA-Ile concentrations (C) in these plants. Experiments were 629 performed with 4 to 5 biological replicates; error bars represent ± SE. Asterisks represent 630 significant difference between members of a pair (student's t-test: **, P < 0.01).

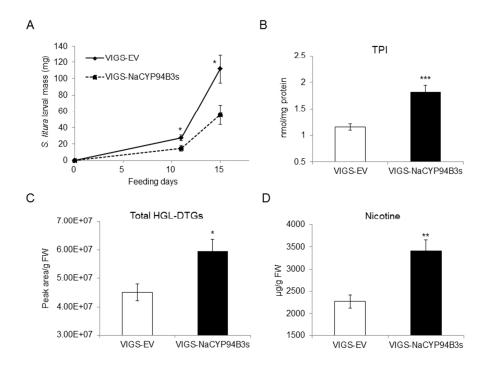
- Figure 3. Simultaneously silencing *NaCYP94B3 likes* by VIGS reduces 12OH-JA-Ile
- accumulation, but increases JA-Ile levels.
- Plants were inoculated with *Agrobacterium* harboring TRV constructs to obtain VIGS-EV
- and VIGS-NaCYP94B3s plants. Leaves were wounded with a pattern wheel and the resulting
- puncture wounds immediately applied with 1:5-diluted S. litura oral secretions (OS), and leaf
- tissues were harvested after 60 min. (A) Transcripts of NaCYP94B3 like-1, NaCYP94B3
- 637 like-2, and NaCYP94B3 like-4, but not NaCYP94B3 like-3, were silenced in
- VIGS-NaCYP94B3s plants. Relative concentrations of 12OH-JA-Ile (B), and contents of
- JA-Ile (C) and JA (D) in VIGS-EV and VIGS-NaCYP94B3s plants. (n = 4 to 5; error bars
- represent \pm SE; Asterisks represent significant differences between members of a pair
- 641 (Student's t test: *, P < 0.05; ***, P < 0.001; ****, P < 0.0001).
- **Figure 4**. Plant resistance to *S. litura* and direct defenses are increased in plants silenced in
- 643 *NaCYP94B3 like* expression.
- (A) S. litura larval mass on VIGS-EV and VIGS-NaCYP94B3s plants. Two freshly hatched
- larvae were placed on leaves of VIGS-EV and VIGS-NaCYP94B3s plants. For each group,
- 18-20 larvae were used. TPI activity (B), nicotine levels (C), and total HGL-DTGs (D) in
- VIGS-EV and VIGS-NaCYP94B3s plants. VIGS-EV and VIGS- NaCYP94B3s plants were
- wounded, and treated with 1: 5-diluted S. litura OS. Leaf tissues were harvested after 72 h for
- direct defenses analysis. (n = 4 to 5; error bars represent \pm SE. Asterisks represent significant
- differences between different plants (Student's t test: *, P< 0.05; **, P< 0.01; ***, P< 0.001).
- Figure 5. Accumulation of 12OH-JA-Ile require JA-Ile and COI1

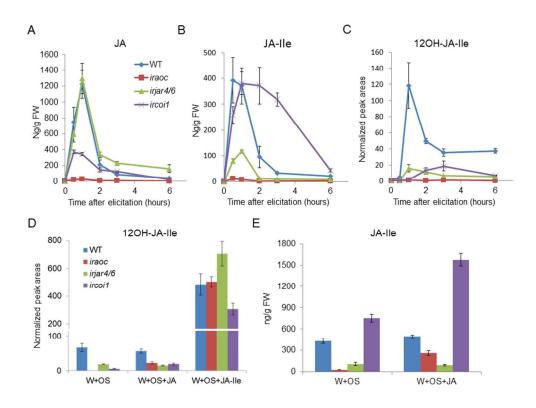

652	Jasmonate profiles of N. attenuata WT, iraoc, irjar4/6 and ircoi1 plants .WT, iraoc, irjar4/6
653	and ircoi1 plants were elicited with W+OS, and leaves were harvested after different times.
654	JA (A), JA-Ile (B), and 12-OH-JA-Ile (C). The accumulation of 12OH-JA-Ile is dependent on
655	JA-Ile and NaCOII.12OH-JA-Ile (D) and JA-Ile levels (E) in WT, iraoc, irjar4/6 and ircoil
656	plants 1 h after puncture wounds were treated with W+OS, W+OS+JA or W+OS+JA-Ile.
657	Contents were determined with HPLC-MS/MS. (n = 3 to 5; error bars represent \pm SE).
658	Figure 6. Transcript levels of <i>NaCYP94B3-like-1</i> and <i>-2</i> are dependent on <i>NaCOI1</i> .
659	NaCYP94B3 like-1 (A) and -2 (B) transcripts levels in WT and ircoi1 plants after W + OS
660	elicitation. Plants were W+OS elicited, and leaf tissue was harvested after indicated times.
661	Total RNA was isolated and transcript levels were quantified by qPCR. ($n = 3$ to 5; error bars
662	represent \pm SE).
663	

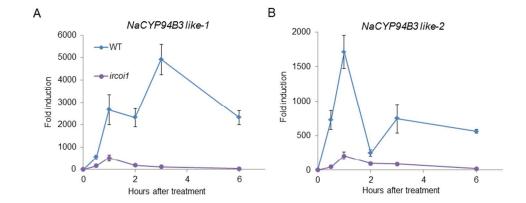
For Table of Contents Only


665

666




190x254mm (96 x 96 DPI)


254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)