FULL PAPER

Two New 3,4-seco-Cycloartane Triterpenes from Gardenia sootepensis

by Wei-Wu Song*a), Xue-Qin Wanga), and Bo Li^b)

^a) Zhoukou Normal University, Zhoukou 466001, Henan, P. R. China

(phone: +86-394-8178252; fax: +86-394-8178252; e-mail: sww168@126.com)

^b) State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China

Two new 3,4-*seco*-cycloartane triterpenes, named sootepin F (1) and sootepin G (2), together with two known compounds, coronalolide methyl ester (3) and sootepin D (4), were isolated from the leaves and twigs of *Gardenia sootepensis*. Their structures were elucidated on the basis of 1D- and 2D-NMR experiments, including HMBC, HSQC, ¹H, ¹H-COSY, and ROESY, as well as HR-MS.

Introduction. – The genus *Gardenia* (family Rubiaceae) comprises about 250 species, and most of them are growing in the tropical and subtropical area of the eastern hemisphere. Five species and one variant of *Gardenia* are found in China [1]. *Gardenia sootepensis* is a medicinal plant widely grown in Xishuangbanna, Yunnan, P. R. China, and used in folk medicine for treating diseases, such as blood congestion and swelling [2].

The Gardenia plants, such as G. sootepensis, G. aubryi, G. obtusifolia, and G. tubifera, have proven to be a rich source of 3,4-seco-cycloartane triterpenes [3-11]. Such compounds often have biological activities, such as cytotoxic and anti-HIV-1 effects [3][5-7][12]. As part of our ongoing program on the discovery of anticancer agents, two new 3,4-seco-cycloartane triterpenes, sootepins F and G (**1**

and **2**) and two known compounds (*Fig. 1*) were isolated and identified from the leaves and twigs of *G. sootepensis*. Herein, we report the isolation and structure elucidation of these compounds.

Results and Discussion. – Sootepin F (1) was obtained as colorless oil, and was shown to possess the molecular formula $C_{31}H_{46}O_5$ by HR-EI-MS (m/z 498.3351 (M^+ ; calc. 498.3345)), indicating nine degrees of unsaturation. The IR spectrum showed absorption bands for methyl ester (1737 cm⁻¹), γ -lactone (1768 cm⁻¹), and α,β -unsaturated aldehyde (1685 cm⁻¹), respectively. The ¹H-NMR spectrum of **1** (*Table*) exhibited a pair of *doublets* at δ (H) 0.52 (d, J=4.2, 1 H) and 0.17 (d, J=4.2, 1 H), characteristic of CH₂(19) H-atoms of the cyclopropane ring in a cycloartane

Fig. 1. Structures of Compounds 1-4

Position	Sootepin F (1) ^a)		Sootepin G (2) ^b)	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1	1.99–1.90 (<i>m</i>), 1.25 (overlapped)	31.8 (<i>t</i>)	2.22 - 2.12 (m), 1.37 - 1.28 (m)	28.2(t)
2	2.34 - 2.29(m), 2.25 - 2.19(m)	31.3(t)	2.50-2.42(m), 2.28-2.17(m)	31.8(t)
3		173.6(s)		175.0 (s)
4	2.80 - 2.72 (m)	40.6(d)	2.13 - 2.02 (m)	37.1 (d)
5	2.50 (t, J = 6.5)	38.1(d)	1.45 - 1.36 (m)	36.2 (d)
6	4.56 - 4.50 (m)	76.9(d)	1.47 - 1.36 (m), 0.81 - 0.70 (m)	21.1(t)
7	1.70 (overlapped), $1.35 - 1.30$ (m)	27.5(t)	2.12 - 2.03 (m), 1.20 - 1.11 (m)	27.1(t)
8	1.59 - 1.51 (m)	38.1(d)	1.44 - 1.35(m)	48.5(d)
9		22.6(s)		21.4(s)
10		23.2(s)		27.3(s)
11	2.34 - 2.27 (m), 2.12 - 2.06 (m)	26.0(t)	1.29 - 1.20 (m), 1.04 - 0.92 (m)	25.3(t)
12	1.59 - 1.51 (m)	32.9(t)	1.67 - 1.57 (m)	33.2(t)
13		45.2 (s)		45.3 (s)
14		48.2(s)		49.1 (s)
15	1.26 - 1.19 (m)	35.8(t)	1.32 - 1.22 (m)	35.9(t)
16	1.87 - 1.76 (m),	28.1(t)	1.93 - 1.80 (m),	28.3(t)
	1.26 - 1.17 (m)		1.28 - 1.20 (m)	
17	1.58 - 1.45 (m)	52.4(d)	1.62 - 1.50 (m)	52.3(d)
18	0.84(s)	18.9(q)	0.92(s)	18.5(q)
19	0.52 (d, J = 4.2), 0.17 (d, J = 4.2)	30.7(t)	0.58 (br. s), 0.36 (br. s),	30.4(t)
20	1.41 - 1.31 (m)	35.8(d)	1.96 - 1.85(m)	35.8 (d)
21	0.80 (d, J = 6.2)	17.9(q)	0.88(s)	18.2(q)
22	1.56 - 1.47 (m), 1.17 - 1.05 (m)	34.6(t)	1.62 - 1.51 (m), $1.22 - 1.12$ (m)	34.9(t)
23	2.22 - 2.13 (m), $1.04 - 0.94$ (m)	25.9(t)	2.41 - 2.33 (m), $2.28 - 2.19$ (m)	26.2(t)
24	6.39(t, J = 7.1)	155.5(d)	6.46 (br. s)	155.9(d)
25		138.9(s)		139.2(s)
26	9.27(s)	195.3(d)	9.35(s)	195.7(d)
27	1.62(s)	9.1(q)	1.71 (s)	9.3(q)
28	1.25 (d, J = 7.2)	9.5(q)	0.78 (d, J = 5.3)	12.0(q)
29		180.3(s)	3.44 (d, J = 6.0)	67.1(t)
30	0.85(s)	19.7(q)	0.88 (s)	19.6 (q)
MeO	3.54 (s)	51.7 (q)	3.62 (s)	51.8 (q)

Table. ¹*H*- and ¹³*C*-*NMR* Data (in CDCl₃) of **1** and **2**. δ in ppm, J in Hz.

 $^{\rm a})$ At 400 and 100 MHz, resp. $^{\rm b})$ At 600 and 150 MHz, resp.

triterpene [11]. The signal at $\delta(H)$ 9.27 (s, 1 H) and 3.54 (s, 3 H) confirmed the presence of an aldehyde and of a MeO group, respectively. The ¹³C-NMR spectra data showed 31 C-atoms, including five Me, a MeO, ten CH₂, eight CH Catoms, and seven C_a-atoms (Table). Taking into account the nine degrees of unsaturation and comparison of the NMR data with those of coronalolide methyl ester (3) reported in the literature, led to the conclusion that 1 was a 3,4-seco-cycloartane triterpene, with an extremely similar structure to that of 3, the only differences occurring at C(4)and C(28) [3]. The C(4)=C(28) bond in 3 was replaced by Me(28)–CH(4) in **1** (*Fig. 1*). A *doublet* at δ (H) 1.25 (*d*, *J* = 7.2, 3 H) was ascribed to this Me(28) group in the γ -lactone ring, and the signal of H–C(α) appeared at δ (H) 2.80–2.72 (m, 1 H), the H–C(β) and H–C(γ) in the γ -lactone unit showed up at 2.50 (t, J = 6.5, 1 H) and at 4.56-4.50 (m, 1 H), respectively. Assignments of the ¹H- and ¹³C-signals as shown in the Table were carried out on the basis of 2D-NMR data and by direct comparison of the chemical shifts with those of similar compounds reported in the literature [3]. The HMBCs from H–C(4), H–C(5) and H–C(28) to C(29) and the COSY correlations between H–C(28) and H–C(4), between H–C(4) and H–C(5) and between H–C(5) and H–C(6) suggested that the γ -lactone ring was attached to C(5) and C(6) (*Fig.* 2). The HMBCs from H–C(26) to C(25), C(27), and C(24) and from H–C(24) to C(25), C(26), and C(27) confirmed the presence of a conjugate system including one aldehyde C-atom and two olefinic C-atoms in the side chain. In addition, another series key HMBCs from H–C(1), H–C(2), and MeO to C(3) suggested that the MeO group was linked to C(3). Thus, the constitutional formula of **1** was established as shown in *Fig.* 1.

Fig. 2. Key ¹H, ¹H-COSY (-) and HMB ($H \rightarrow C$) correlations for 1

Fig. 3. Key ROESY $(H \leftrightarrow H)$ correlations for 1

The relative configuration of **1** was established on the basis of its ROESY spectrum (*Fig. 3*), whose correlations between H–C(4) and H–C(6), and between H–C(28) and H–C(19) indicated that the Me group at C(28) has β -orientation, same as C(19), but the H-atoms of H–C(4), H–C(5), and H–C(6) are positioned on the other side of the molecular plane.

Sootepin G (2) was also obtained as colorless oil. The molecular formula was established as C₃₁H₅₀O₄ according to the HR-EI-MS at m/z 486.3702 (M^+ ; calc. 486.3709), indicating seven degrees of unsaturation. The IR spectrum showed absorptions at 3448, 1738, 1688, and 1641 cm^{-1} , accounting for one OH group, one C=O group, one α,β unsaturated aldehvde, and a C=C bond. The ¹H-NMR spectrum of 2 exhibited a characteristic pair of broad singlets at $\delta(H)$ 0.58 and 0.36, suggesting the presence of $CH_2(19)$ of the cyclopropane ring of a cycloartane triterpene [11]. A singlet at $\delta(H)$ 9.35 (s, 1 H) was assigned to the aldehyde group and a broad *singlet* at $\delta(H)$ 6.46 (br. s, H–C(24)) confirmed the presence of an α,β -unsaturated aldehyde. A signal for the MeO group was observed at $\delta(H)$ 3.62 (s, 3 H). The ¹³C-NMR spectrum of **2** revealed the presence of six C_q-atoms, seven CH, twelve CH₂, and six Me groups. Two olefinic C-atoms were observed at $\delta(C)$ 155.9 and 139.2, together with an aldehyde C-atom at $\delta(C)$ 195.7. The signals at $\delta(C)$ 175.0 and 51.8 were assigned to a methyl ester. Comparison of the 1H- and 13C-NMR data of 2 with those of sootepin D (4) revealed them to be very similar. The only difference was the appearance of a signal due to a Me group at $\delta(C)$ 12.0, coupled in the HSQC spectrum to a newly appearing Me group at $\delta(H) 0.78$ (d, J = 5.3, 3 H), while a pair of terminal olefinic C-atom signals at $\delta(C)$ 152.4 and 110.2 had disappeared. The relative configuration of 2 was established by its ROESY spectrum, comparison of H-atom coupling constants and other spectra data of 2 with those of 4. The configuration at C(4) could not be established so far. All of the remaining signals have been confirmed by HMBC, ¹H,¹H-COSY, and ROESY spectra. Thus, the structure of 2 was determined as shown in Fig. 1.

The structures of the two known compounds were determined as coronalolide methyl ester (3) and sootepin D (4) by comparison of their spectra data with those reported in the literature [3][5].

The authors are grateful to the members of the analytical group from the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, for measuring the $[\alpha]$ value, IR, UV, NMR, and MS spectra.

Experimental Part

General. TLC: silica-gel G plates; visualization by spraying with 10% H₂SO₄ in EtOH, followed by heating. Column chromatography (CC): silica gel (SiO₂, 200–300 mesh; *Qingdao Marine Chemical Co., Ltd.*). Optical rotation: *Horiba-SEAP-300* spectropolarimeter. UV Spectra: *Shimadzu UV-2401PC* spectrophotometer; λ_{max} (log ε) in nm. IR Spectra: *Bio-Rad FTS-135* sectrometer, KBr pellets; $\tilde{\nu}$ in cm⁻¹. 1D- and 2D-NMR spectra: *Bruker AM-400* and *DRX-500* instruments; at 400 and 100 MHz, resp., and 500 and 125 MHz, resp.; δ in ppm rel. to Me₄Si as internal standard, *J* in Hz. FAB-MS: *VG AutoSpec-3000*; in *m/z*. HR-ESI-MS: *API Qstar-Pulsar LC/TOF* mass spectrometers; in *m/z*.

Plant Material. The leaves and twigs of *G. sootepensis* were collected in Xishuangbanna, Yunnan, P. R. China, in November 2009 and identified by Prof. *Yu-Min Shui*, Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (No. 331081) was deposited with the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences.

Extraction and Isolation. The air-dried leaves and twigs (14 kg) of *G. sootepensis* were extracted with MeOH at r.t. (4×401). The extracts were combined and concentrated, and the residue was suspended in H₂O, and then successively partitioned with petroleum ether (PE), AcOEt, and BuOH, resp. The AcOEt-soluble extract (767 g) was subjected to CC (SiO₂; CHCl₃/MeOH 100:0 \rightarrow 70:30) to afford seven fractions: *Frs.* 1–7. *Fr.* 2 was passed through CC (SiO₂; CHCl₃/ AcOEt 30:1 \rightarrow 10:1) to afford five fractions: *Frs.* 2.1–2.5. *Fr.* 2.2 was subjected to CC (SiO₂; PE/AcOEt 10:1 \rightarrow 3:1) to afford **1** (126 mg). Compounds **2** (12 mg), **3** (80 mg), and **4** (470 mg) were obtained from *Fr.* 2.3 after repeated CC (SiO₂; CHCl₃/AcOEt 30:1 \rightarrow 10:1) and *RP-18* (MeOH/H₂O 70:30 \rightarrow 100:0).

Sootepin *F* (= Methyl 3-[(1aS,3aR,4R,6aS,6bS,7aR,10S,10aS, 10bR)-Dodecahydro-3a,6a,10-trimethyl-4-[(5E)-6-methyl-7-oxohept-5en-2-yl]-9-oxo-1H-cyclopenta[7,8]cyclopropa[4,4a]naphtho[2,3-b]furan-10b(2H)-yl]propanoate; **1**). Colorless oil. UV (CHCl₃): 240.8 (3.91). $[a]_{D}^{2+5} = +89.8 (c = 0.80, CHCl_3)$. IR (KBr): 3448, 2946, 2877, 1768, 1737, 1685, 1644, 1171, 957, 755. ¹H- and ¹³C-NMR: see the *Table*. ESI-MS: 521 ([*M* + Na]⁺). HR-EI-MS (pos.): 498.3351 (*M*⁺, C₃₁H₄₆O⁺₅; calc. 498.3345).

Sootepin G (= Methyl 3-[(1R,3aS,3bS,6S,6aR,7aS,9aR)-Decahydro-6-(1-hydroxypropan-2-yl)-3a,9a-dimethyl-1-[(5E)-6-methyl-7-oxohept-5-en-2-yl]-1H-cyclopenta[a]cyclopropa[e]naphthalen-6a(7H)-yl]-propanoate; **2**). Colorless oil. UV (CHCl₃): 241.4 (4.07). [a]_{2^h6</sup> = +36.8 (c = 0.34, CHCl₃). IR (KBr): 3448, 2936, 2873, 1738, 1688, 1641, 1377, 1170, 1035. ¹H- and ¹³C-NMR: see the *Table*. EI-MS: 486 (M^+). HR-EI-MS (pos.): 486.3702 (M^+ , C₃₁H₅₀O[‡]; calc. 486.3709).}

REFERENCES

- Editorial Board of Flora of China of Chinese Academy of Sciences, 'Flora of China (Chinese version)', Science Press, Beijing, 1999, Vol. 71, p. 329.
- [2] Z. Y. Wu, 'Primary color field guide to Chinese herbal medicine', people's medical publishing house, Beijing, 1985, p. 416.
- [3] G. L. Silva, R. R. Gil, B. Cui, H. Chai, T. Santisuk, E. Srisook, V. Reutrakul, P. Tuchinda, S. Sophasan, S. Sujarit, S. Upatham, S. M. Lynn, J. E. Farthing, S.-L. Yang, J. A. Lewis, M. J. O'Neill, N. R. Farnsworth, G. A. Cordell, J. M. Pezzuto, A. D. Kinghorn, *Tetrahedron* 1997, *53*, 529.
- [4] T. Nuanyai, R. Sappapan, T. Teerawatananond, N. Muangsin, K. Pudhom, J. Nat. Prod. 2009, 72, 1161.

- [5] R. Grougnet, P. Magiatis, S. Mitaku, S. Loizou, P. Moutsatsou, A. Terzis, P. Cabalion, F. Tillequin, S. Michel, J. Nat. Prod. 2006, 69, 1711.
- [6] P. Tuchinda, W. Pompimon, V. Reutrakul, M. Pohmakotr, C. Yoosook, N. Kongyai, S. Sophasan, K. Sujarit, S. E. Upathum, T. Santisuk, *Tetrahedron* 2002, 58, 8073.
- [7] V. Reutrakul, C. Krachangchaeng, P. Tuchinda, M. Pohmakotr, T. Jaipetch, C. Yoosook, J. Kasisit, S. Sophasan, K. Sujarit, T. Santisuk, *Tetrahedron* 2004, 60, 1517.
- [8] T. Nuanyai, S. Chokpaiboon, T. Vilaivan, K. Pudhom, J. Nat. Prod. 2010, 73, 51.
- [9] D. Lee, M. Cuendet, F. Axelrod, P. I. Chavez, H. H. S. Fong, J. M. Pezzuto, A. D. Kinghorn, *Tetrahedron* 2001, 57, 7107.

- [10] D. Lee, E. J. Park, M. Cuendet, F. Axelrod, P. I. Chavez, H. H. S. Fong, J. M. Pezzuto, A. D. Kinghorn, *Bioorg. Med. Chem. Lett.* 2001, 11, 1565.
- [11] N. Kongkum, P. Tuchinda, M. Pohmakotr, V. Reutrakul, P. Piyachaturawat, S. Jariyawat, K. Suksen, R. Akkarawongsapat, J. Kasisit, C. Napaswad, J. Nat. Prod. 2013, 76, 530.
- [12] P. Tuchinda, A. Saiai, M. Pohmakotr, C. Yoosook, J. Kasisit, C. Napaswat, T. Santisuk, V. Reutrakul, *Planta Med.* 2004, 70, 366.

Received August 23, 2015 Accepted October 29, 2015