Pestalpolyols A-D, Cytotoxic Polyketides from Pestalotiopsis sp. cr013

Authors

Affiliations

Jing Li ${ }^{1,2,3}$, Jin Xie ${ }^{1,2}$, Yin-He Yang ${ }^{1}$, Xiao-Lian Li ${ }^{1}$, Ying Zeng ${ }^{1}$, Pei-Ji Zhao ${ }^{1}$
${ }^{1}$ State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
${ }^{2}$ Life Science College, Southwest Forestry University, Kunming, China
${ }^{3}$ University of Chinese Academy of Sciences, Beijing, China

Key words

- Pestalotiopsis sp. cr013
- Amphisphaeriaceae
- pestalpolyol
- X-ray crystallography
- polyketide
- cytotoxic activity

received January 4, 2015
 revised April 17, 2015
 accepted June 7, 2015

Bibliography
DOI http://dx.doi.org/ 10.1055/s-0035-1546257

Published online July 30, 2015
Planta Med 2015; 81:
1285-1289 © Georg Thieme
Verlag KG Stuttgart • New York •
ISSN 0032-0943
Correspondence

Prof. Dr. Pei-ji Zhao

State Key Laboratory of Phytochemistry and Plant Resources in West China
Kunming Institute of Botany
Chinese Academy of Sciences 132\# Lanhei Road
Kunming 650201
China
Phone: + 8687165223111
Fax: + 868715150227
zhaopeiji@mail.kib.ac.cn

Abstract

V
Four novel polyketides, named pestalpolyols A (1), B (2), C (3), and D (4), were isolated from solid fermentation products of Pestalotiopsis sp. cr013. Their structures were elucidated by extensive spectroscopic methods, including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry experiments, and the absolute configuration was
confirmed by single-crystal X-ray diffraction analysis using the anomalous scattering of $\mathrm{Cu} \mathrm{K} \alpha$ radiation. The inhibitory activities of compounds 1, 2, and 4 against five human tumor lines were tested in vitro, and showed IC_{50} values 2.3$31.2 \mu \mathrm{M}$.

Supporting information available online at http://www.thieme-connect.de/products

Introduction
 ∇

Nature produces a variety of different species, prokaryotes, and eukaryotes. Among them, fungi play a very important but yet mostly unexplored role [1]. Pestalotiopsis species (Amphisphaeriaceae) are widely distributed all over the world and some species of this genus may cause diseases on a variety of plants [2-5]. In recent years, Pestalotiopsis, as a highly creative genus of varied and abundant secondary metabolites, has gained considerable attention by chemists [6]. Some products from the genus might be important as drug lead compounds for the treatment of human diseases and control of plant diseases e.g. cytotoxic torreyanic acid [7], cytotoxic chloropestolide A [8], and antifungal isopestacin [9]. In order to search for new structural and active compounds, a strain, Pestalotiopsis sp. cr013, which was isolated from the aeciospores (spores produced in an aecium of the rust fungi, which spread to and infect the primary host [10]) of Cronartium ribico$l a$, was investigated and several new compounds were obtained, of which two ambuic acid analogs were published recently [11]. This report describes four novel pestalpolyol structures (\mathbf{O} Fig. 1) and their activities.

Results and Discussion
 ∇

The nucleotide sequences for the ITS1-5.8S rDNA-ITS4 region of strain cr013 was registered in the GenBank with the accession number KM652628, and the strain was determined to be Pestalotiopsis sp. according to the ITS analysis. Compound 1 was obtained as colorless crystals, and its molecular formula, $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4}$, was deduced by HR-ESI-MS as well as ${ }^{13} \mathrm{C}$ NMR coupled with distortionless enhancement by polarization transfer (DEPT) spectra. Based on the 2D NMR data, including the heteronuclear single quantum correlation (HSQC), heteronuclear multiple-bond correlation (HMBC), and correlation spectroscopy (COSY) spectra (O Table $\mathbf{1}$), the gross structure of 1 was determined to be a straight chain polyketide containing poly-double bond, poly-hydroxy, and poly-methyl substituents [12,13]. The ${ }^{1} \mathrm{H}$ NMR, COSY, and HMBC spectra (O Fig. 2) showed structure 1. The rotating-frame NOE spectroscopy (ROESY) experiment showed nuclear Overhauser effect (NOE) interactions between $\mathrm{H}-22 / \mathrm{H}-7$ and between $\mathrm{H}-24 / \mathrm{H}-11$. X-ray crystallography, with the final refinement on the Cu KR data resulting in a Flack parameter of -0.1 (2), allowed an unambiguous assignment of the complete absolute configuration of 1 with $4 E, 6 S$, $7 S, 8 E, 10 S, 11 S, 12 E, 14 S, 15 R, 16 S$, and $18 S$

configurations (© Fig. 3). Compound 1 was named pestalpolyol A. Compound 2 was isolated as a colorless amorphous solid. The molecular formula was $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{4}$ on the basis of HR-ESI-MS as well as ${ }^{13}$ C-NMR coupled with DEPT spectra. According to the HMBC and COSY spectra (\bigcirc Table 1), the skeleton was almost the same as compound 1 expect for three carbons (\mathbf{O} Fig. 1). The 2D-NMR data (Table 1) led to the structure of 2. A ROESY experiment showed correlations between $\mathrm{H}-20 / \mathrm{H}-7, \mathrm{H}-7 / \mathrm{H}-9, \mathrm{H}-9 /$ $\mathrm{H}-11, \mathrm{H}-22 / \mathrm{H}-11, \mathrm{H}-11 / \mathrm{H}-13, \mathrm{H}-13 / \mathrm{H}-15$, and $\mathrm{H}-15 / \mathrm{H}-24$. Based on similar NMR and specific rotation data of compounds $\mathbf{1}$ and $\mathbf{2}$, and from a biogenetic perspective, the absolute configuration of 2 is proposed as shown in 0 Fig. 1 with $4 E, 6 S, 7 S, 8 E, 10 S, 11 S$, $12 E, 14 S, 15 S$, and $16 E$ configurations, and was named pestalpolyol B.
Compound 3 was isolated as a colorless amorphous solid. The molecular formula was assigned as $\mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{5}$ on the basis of HR-ESI-MS as well as ${ }^{13} \mathrm{C}$-NMR coupled with DEPT spectra. According to the HMBC and COSY spectra (O Table 2), the skeleton was similar to compound 1 except for five carbons and a terminal $\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ (O Fig. 1). A ROESY experiment showed correlations between H-26/H-7, H-7/H-9, H-9/H-11, H-11/H-28, H-11/H-13, H-13/H-15, H-15/H-30, H-15/H-17, H-17/H-19, H-19/H-18, H-19/ $\mathrm{H}-20$, and $\mathrm{H}-20 / \mathrm{H}-22$. Comparison of NMR and specific rotation data of compounds 1 and $\mathbf{3}$, and a biogenetic perspective, led to the absolute configuration of $\mathbf{3}$ proposed as shown in \odot Fig. 1
with $4 E, 6 S, 7 S, 8 E, 10 S, 11 S, 12 E, 14 S, 15 S, 16 E, 18 R, 19 R, 20 S$, and $22 S$ configurations, named as pestalpolyol C.
Compound 4 was isolated as a colorless amorphous solid. The molecular formula was $\mathrm{C}_{34} \mathrm{H}_{60} \mathrm{O}_{5}$ on the basis of HR-ESI-MS as well as ${ }^{13} \mathrm{C}$-NMR and DEPT spectra. According to the HMBC and COSY spectra (0 Table 2), the skeleton of 4 was almost the same as compound 3 , except for one more carbon in a $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$ group (O Fig. 1). The 2D-NMR data (O Table 2) led to the structure of 4 proposed in \odot Fig. 1. Comparison of NMR and specific rotation data of compounds 1 and 4, and a biogenetic perspective, suggested the absolute configuration of 4 in 0 Fig. 1, named as pestalpolyol D.
Compounds 1-4 were assayed for antifungal activity (Gaeumannomyces graminis, Fusarinum moniliforme, Verticillium cinnabarium, and Phyricularia oryzae) and antibacterial activity (Pseudomonas solanacearum, Staphylococcus aureus, and Salmonella typhimurium ATCC 6539), but did not show any inhibition activity at $100 \mu \mathrm{~g} /$ disk, nor any nematicidal activity. Compounds $\mathbf{1}, \mathbf{2}$, and 4 were assayed for cytotoxicity. Compound 1 showed IC_{50} values of $10.4 \mu \mathrm{M}$ (HL-60), $11.3 \mu \mathrm{M}$ (SMMC-7721), 2.3 (A-549), $13.7 \mu \mathrm{M}$ (MCF-7), and $12.4 \mu \mathrm{M}$ (SW480). Compound 2 showed an IC ${ }_{50}$ value of $10.6 \mu \mathrm{M}$ (A-549). Compound 4 showed IC_{50} values of $15.7 \mu \mathrm{M}$ (HL-60), $31.2 \mu \mathrm{M}$ (SMMC-7721), $10.7 \mu \mathrm{M}$ (A-549), $23.7 \mu \mathrm{M}$ (MCF-7), and $21.4 \mu \mathrm{M}$ (SW480). The IC_{50} values of compounds $\mathbf{1}$ and $\mathbf{4}$ were similar to those of related compounds [13].

Table $1{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \delta\right.$ in ppm, mult. J in Hz), ${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}, \delta$ in ppm), and HBMC data of 1 and 2.

Pos.	1*			2**		
	$\delta_{\text {H }}$	δ_{C}	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	$\delta_{\text {H }}$	δ_{C}	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)
1	1.08, t, (7.3)	9.4, q	C-2, C-3	1.09, t, (6.0)	9.5, q	C-2, C-3
2	2.79, m	31.3, t	C-1, C-3	2.73, q, (7.2)	30.9, t	C-1, C-3
3	-	205.1, s	-	-	202.5, s	-
4	-	137.7, s	-	-	136.9, s	-
5	6.72 , dd, (1.1, 9.4)	148.2, d	C-3, C-4, C-6, C-7, C-21, C-22	6.98, d, (9.4)	147.4, d	C-3, C-6, C-7, C-19, C-20
6	2.82, m	38.4, d	C-4, C-5, C-7, C-22	3.07, m	38.7, d	C-4, C-5, C-7, C-20
7	3.86, d, 8.6	83.8, d	C-5, C-6, C-8, C-9, C-22, C-23	4.25, d, (7.7)	82.5, d	C-5, C-6, C-8, C-9, C-19, C-20
8	-	137.6, s	-	-	137.5, s	-
9	5.33, d, (1.4)	133.9, d	C-10, C-11, C-23, C-24	5.88, d, (9.3)	132.7, d	C-7, C-10, C-21, C-22
10	2.68, m	37.1, d	-	2.99, m	37.13, d	C-8, C-9, C-11, C-22
11	3.72, d, (8.6)	84.1, d	C-10, C-12, C-13, C-24, C-25	4.22, d, (7.3)	82.4, d	C-10, C-12, C-13, C-22, C-23
12	-	137.4, s	-	-	138.4, s	-
13	5.34, d, (1.5)	133.5, d	C-14, C-16, C-25	5.82, d, (9.1)	131.7, d	C-11, C-14, C-23, C-24
14	2.68, m	37.0, d	-	2.92, m	37.06, d	C-12, C-13, C-15, C-24
15	$3.21, \mathrm{dd},(3.4,7.9)$	79.0, d	C-13, C-14, C-16, C-17, C-26, C-27	4.02, d, (8.4)	83.1, d	C-13, C-14, C-16, C-17, C-24, C-25
16	1.47, m, overlap	32.8, d	C-15, C-17, C-18	-	138.9, s	-
17	1.47, m, overlap	42.7, t	overlap	5.58, q, (6.6)	121.8, d	C-15, C-18, C-25
	1.04, m		C-15, C-16, C-19, C-27, C-28			
18	1.79, m	33.2, d	C-17	1.60, d, (6.6)	13.6, q	C-16, C-17
19	1.43, m	30.6, t	C-17, C-18, C-20, C-28	2.04, s	12.4, q	C-3, C-4, C-5
	1.14, m		C-17, C-18, C-20, C-28			
20	0.94, m, overlap	11.5, q	overlap	1.09, t, (6.0)	17.6, q	C-5, C-6, C-7
21	1.84, d, (1.3)	12.0, q	C-3, C-4, C-5	1.94, s	13.0, q	C-7, C-8, C-9
22	0.92, m, overlap	17.97, q	overlap	1.14, d, (6.7)	18.9, q	C-9, C-10, C-11
23	1.712, d, (1.2)	11.9, q	C-7, C-8, C-9	1.93, s	12.5, q	C-11, C-12, C-13
24	0.85, d, (6.8)	18.01, q	C-9, C-10, C-11	1.00, d, (6.7)	18.6, q	C-13, C-14, C-15
25	1.710, d, (1.2)	11.9, q	C-11, C-12, C-13	1.78, s	11.7, q	C-15, C-16, C-17
26	0.91, m, overlap	17.0, q	overlap	-	-	-
27	0.92 , m, overlap	14.1, q	overlap	-	-	-
28	0.88 , m, overlap	20.2, q	-	-	-	-

* The NMR data obtained in $\mathrm{CD}_{3} \mathrm{OD}$; ** the NMR data obtained in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$

Fig. 2 Observed COSY and key HMBC correlations for compound 1

Materials and Methods

∇

General experimental procedures

The optical rotations were measured with a Jasco DIP-370 digital polarimeter. UV spectra were recorded on a Shimadzu UV2401PC spectrophotometer. The NMR spectra were obtained with an Avance III 600 spectrometer. The ESI and HR-ESI-MS were recorded on Finnigan LCQ-Advantage and VG Auto-Spec3000 mass spectrometers, respectively. Column chromatography was performed on silica gel G, silica gel GF254, silica gel 200-300 mesh (Qingdao Marine Chemical Factory), silica gel H (Merck), and Sephadex LH-20 (Amersham Pharmacia). Cisplatin (99\% purity) was purchased from Sigma-Aldrich.

Fig. 3 Crystal X-ray structure of 1. (Color figure available online only.)

Microbial material

The aeciospores of C. ribicola were collected from Pinus armandii Franch. (Pinaceae) in Kunming, Yunnan Province, People's Republic of China, in March 2013, and identified by Dr. En-De Liu of Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (No. KUN1253509) was deposited at the Herbarium of Kunming Institute of Botany (KUN), Chinese Academy of Sciences. The aeciospores were incubated on distilled filter paper at $25^{\circ} \mathrm{C}$ and cultured until a colony or mycelium appeared. After being cultured for about one week, a strain was isolated from the aeciospores, identified as Pestalotiopsis sp. (strain number cr013), and is preserved in the Kunming Institute of Botany, Chinese Academy of Science, Kunming, China. Pestalotiopsis sp. cr013 (30 L) was cultured on improved Fries culture agar ($\mathrm{KH}_{2} \mathrm{PO}_{4}$

Table $2{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \delta\right.$ in ppm, mult. J in Hz), ${ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}, \delta$ in ppm), and HBMC data of 3 and 4.

Pos.	3*			4*		
	$\delta_{\text {H }}$	δ_{C}	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)	$\delta_{\text {H }}$	δ_{C}	HMBC ($\mathrm{H} \rightarrow \mathrm{C}$)
1	-	-	-	1.09, m	9.5, q	C-2, C-3
2	2.35, s	26.0, q	C-3, C-4, C-5	2.73, m	30.9, t	C-1, C-3
3	-	200.0, s	-	-	202.5, s	-
4	-	137.4, s	-	-	136.9, s	-
5	6.98, d, (9.4)	148.9, d	C-3, C-6, C-7, C-25, C-26	6.97, d, (9.4)	147.4, d	C-3, C-7, C-25, C-26
6	3.06, m	38.8, d	C-4, C-5, C-7, C-26	3.07, m	38.7, d	C-4, C-5, C-7, C-26
7	4.22, d, (7.8)	82.4, d	C-5, C-6, C-8, C-9, C-27, C-28	4.25, d, (7.8)	82.5, d	C-5, C-6, C-8, C-9, C-27, C-28
8	-	138.3, s	-	-	137.5, s	-
9	5.83, m	132.8, d	C-10, C-11, C-27, C-28	5.83, m	132.7, d	C-10, C-11, C-27, C-28
10	2.97, m	37.1, d	C-9, C-11, C-12, C-28	2.99, m	37.13, d	C-9, C-12, C-28
11	4.15, d, (7.7)	82.9, d	overlap	4.16, d, (7.6)	82.4, d	overlap
12	-	137.9, s	-	-	138.4, s	-
13	5.80, m	131.9, d	C-14, C-29, C-30	5.87, m	131.7, d	C-14, C-29, C-30
14	2.97, m	36.7, d	C-12, C-13, C-15, C-30	2.92, m	37.06, d	C-12, C-16, C-30
15	4.15, d, (7.7)	82.6, d	overlap	4.16, d, (7.6)	82.8, d	overlap
16	-	137.6, s	-	-	138.9, s	-
17	5.85, m	131.8, d	C-18, C-19, C-31, C-32	5.87, m	131.8, d	C-18, C-31, C-32
18	2.88, m	36.7, d	C-16, C-17, C-19, C-32	2.86, m	36.86, d	C-16, C-17, C-19, C-32
19	3.49, dd, (7.4, 3.4)	77.9, d	C-17, C-21, C-32, C-33	3.49, dd, (7.1, 3.4)	78.0, d	C-17, C-32, C-33
20	1.91, m	33.1, d	-	1.90, m	33.2, d	overlap
21	1.68 , dt, (13.5, 6.9)	42.5, t	C-19, C-20, C-23, C-33, C-34	$1.68, \mathrm{dt},(13.5,6.9)$	42.5, t	C-19, C-20, C-23, C-33, C-34
	1.17, dd, (13.5, 6.9)		C-19, C-20, C-23, C-33, C-34	1.16, m		C-23, C-33, C-34
22	$1.55, \mathrm{td},(13.6,6.8)$	32.1, d	C-21, C-23, C-34, C-24	1.56, m	32.1, d	C-21, C-23, C-24, C-34
23	1.41, dq, (12.0, 7.2)	30.0, t	C-21, C-22, C-34, C-24	1.41, m	30.0, t	C-24, C-34
	1.07, m		-	1.09, m		overlap
24	0.85, t, (7.4)	12.3, q	C-22, C-23	0.87, t, (7.4)	12.0, q	C-22, C-23
25	2.03, s	12.2, q	C-3, C-4, C-5	2.04, s	12.5, q	C-3, C-4, C-5
26	1.06, d, (7.1)	17.5, q	148.9, 82.4, 38.8	1.07, m	17.6, q	overlap
27	1.93, s	12.9, q	overlap	1.94, s	12.9, q	overlap
28	1.08, m	18.7, q	overlap	1.13, m	18.9, q	overlap
29	1.93, s	12.6, q	overlap	1.93, s	12.5, q	overlap
30	1.08, m	18.7, q	overlap	1.12, m	18.6, q	overlap
31	1.89, s	12.4, q	C-15, C-16, C-17	1.90, s	11.7, q	C-15, C-16, C-17
32	1.08, m	18.6, q	overlap	1.07, m	18.77, q	overlap
33	1.13, d, (6.7)	14.8, q	C-19, C-20, C-21	1.11, m	14.8, q	C-19, C-20, C-21
34	0.89, d, (6.4)	20.3, q	C-21, C-22, C-23	0.87, d, 6.4	20.3, q	C-21, C-22, C-23

* The NMR data obtained in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$
$1 \mathrm{~g}, \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} 0.5 \mathrm{~g}, \mathrm{NaCl} 0.1 \mathrm{~g}, \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} 0.13 \mathrm{~g}$, saccharose 20.0 g , ammonium tartrate 5.0 g , yeast extract $1.0 \mathrm{~g}, \mathrm{NH}_{4} \mathrm{NO}_{3}$ 1.0 g , distilled water 1 L , and agar 15.0 g ; pH was natural) dish at a temperature of $25^{\circ} \mathrm{C}$ for 21 days.

Extraction and isolation

The solid fermentation products were cut into small pieces and extracted exhaustively with 30.0 L of mixture solution (EtOAc/ $\mathrm{MeOH} / \mathrm{HAc}, 80: 15: 5 \mathrm{v} / \mathrm{v} / \mathrm{v})$ three times $(3 \times 30 \mathrm{~L})$ to obtain the rude extract. The extract were dissolved in water (500 mL), and extracted with 1000 mL EtOAc five times. The dried ethyl acetate extract (30.1 g) was subjected to a column of silica gel G (200-300 mesh, $6.5 \times 45 \mathrm{~cm}, 250 \mathrm{~g})$ using a $\mathrm{CHCl}_{3}-\mathrm{MeOH}(100: 0,100: 10$, $90: 10,80: 20,0: 100$, each $4 \mathrm{~L}, 25 \mathrm{~mL} / \mathrm{min}$) gradient solvent system to produce five fractions (Fr. 1-Fr. 5). Fr. 1 (9.223 g) was placed in a column of silica gel (200-300 mesh, $3.5 \times 43 \mathrm{~cm}, 80 \mathrm{~g}$) and eluted with petroleum ether-EtOAc (100:10, 80:20, 70:30, $60: 40$, each $3 \mathrm{~L}, 15 \mathrm{~mL} / \mathrm{min}$) and a $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($200: 10$, $100: 10,80: 20,0: 100$, each $3 \mathrm{~L}, 15 \mathrm{~mL} / \mathrm{min}$) gradient solvent system to yield fractions of Fr. 1.1-Fr. 1.11. Fr. 1.7 (534.8 mg) was subjected to a column of silica gel (GF254, $2.5 \times 43 \mathrm{~cm}, 50 \mathrm{~g}$) using
a petroleum ether-acetone ($100: 7,100: 10,80: 20$) gradient solvent system to give fractions of Fr. 1.7.1-Fr. 1.7.6. The Fr. 1.7.1 $(112.3 \mathrm{mg})$ was purified by Sephadex LH-20 (MeOH, $2.5 \times$ $120 \mathrm{~cm}, 1 \mathrm{~mL} / \mathrm{min}$) to produce two fractions (Fr. 1.7.1.1 and Fr. 1.7.1.2). Fr. 1.7.1.1 (72.8 mg) was subjected to a column of silica gel (GF254, $2.5 \times 43 \mathrm{~cm}, 20 \mathrm{~g}$) using a CHCl_{3}-acetone (100:6, 100:10, 80:20) gradient solvent system to produce $1(55.5 \mathrm{mg})$. Fr. $2(3.233 \mathrm{~g})$ was placed in a column of silica gel (200-300 mesh, $3.5 \times 43 \mathrm{~cm}, 80 \mathrm{~g})$ and eluted with a $\mathrm{CHCl}_{3}-\mathrm{MeOH}(20: 1,10: 1$, $9: 1,8: 2,7: 3$, each $1.5 \mathrm{~L}, 15 \mathrm{~mL} / \mathrm{min}$) gradient solvent system to yield fractions of Fr. 2.1-Fr. 2.5. Fr. 2.1 (322.1 mg) was placed in a column of silica gel (GF254, $2.5 \times 43 \mathrm{~cm}, 30 \mathrm{~g}$) using a petroleum ether-acetone ($9: 1,7: 3$) gradient solvent system to give fractions of Fr. 2.1.1-Fr. 2.1.2. Fr. 2.1.1 (162.4 mg) was isolated by Sephadex LH-20 (MeOH, $2.5 \times 120 \mathrm{~cm}, 1 \mathrm{~mL} / \mathrm{min})$ and a column of silica gel (GF254, $2.5 \times 43 \mathrm{~cm}, 20 \mathrm{~g}$) using CHCl_{3}-acetone ($80: 20$, $70: 30,0: 100)$ with formic acid (0.3%) to give fractions of Fr . 2.1.1.1.1-Fr. 2.1.1.1.3. At last, Fr. 2.1.1.1.3 (22.1 mg) was purified by semipreparative HPLC (LC3000 Semipreparation Gradient HPLC System, China, $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 254 \mathrm{~nm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=90$: 10, flow rate $3.0 \mathrm{~mL} / \mathrm{min})$ to yield $3(2.5 \mathrm{mg})$ and $4(4.5 \mathrm{mg})$. Fr. 2.4
(286.3 mg) was purified by Sephadex $\mathrm{LH}-20$ eluting with CHCl_{3-} $\mathrm{MeOH}(1: 1,3 \times 150 \mathrm{~cm}, 1 \mathrm{~mL} / \mathrm{min})$ to produce two fractions (Fr. 2.4.1 and Fr. 2.4.2). Fr. 2.4.1 (198.8 mg) was isolated by Sephadex LH-20 (MeOH, $2.5 \times 120 \mathrm{~cm}, 1 \mathrm{~mL} / \mathrm{min}$) to produce two fractions (Fr. 2.4.1.1 and Fr. 2.4.1.2). Fr. 2.4.1.1 (150.0 mg) was first purified using semipreparative HPLC (LC3000 Semipreparation Gradient HPLC System, China, $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 254 \mathrm{~nm}, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}=90: 10$, flow rate $3.0 \mathrm{~mL} / \mathrm{min}$) and then was isolated by a silica gel (GF254, $2.5 \times 43 \mathrm{~cm}, 20 \mathrm{~g}$) using petroleum ether-acetone (8:2) to produce 2 (2.0 mg).
Pestalpolyol A (1): Colorless crystals; m.p.117-118 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{26}=$ $+4.56(c=0.13, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon): 233$ (4.03); IR (KBr) $v_{\text {max }}: 3428,2962,1673,1630,1454,1385,1036,1019 \mathrm{~cm}$ ${ }^{-1}$; NMR data see O Table 1; ESI-MS: 473 [M + Na] ${ }^{+}$; HR-ESI-MS: 473.3607 ([M + Na $]^{+}$, calcd. 473.3607).

Crystal data: All single-crystal X-ray diffraction data were collected at 100 (2) K on a Bruker APEX DUO with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA)$. The structures were solved by direct methods (SHELXS-97) and refined using full-matrix least-squares difference Fourier techniques. $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{4}, \mathrm{M}_{\mathrm{r}}=450.68$, orthorhombic, $\mathrm{a}=11.0339(5) \AA, \mathrm{b}=11.5162(6) \AA, \mathrm{c}=44.838(2) \AA, \alpha=90.00^{\circ}$, $\beta=90.00^{\circ}, \gamma=90.00^{\circ}, V=5697.6(5) \AA^{3}, T=100(2) \mathrm{K}$, space group P212121, $Z=8, \mu(\mathrm{CuK} \alpha)=0.529 \mathrm{~mm}^{-1} 27477$ reflections measured, 9921 independent reflections ($\mathrm{R}_{\mathrm{int}}=0.0752$). The final R_{1} values were 0.0709 [$\mathrm{I}>2 \sigma(\mathrm{I})]$. The final $\mathrm{wR}\left(\mathrm{F}^{2}\right)$ values were $0.1848[\mathrm{I}>2 \sigma(\mathrm{I})]$. The final R_{1} values were 0.0932 (all data). The final $w R\left(F^{2}\right)$ values were 0.1983 (all data). The goodness of fit on F^{2} was 1.075 . Flack parameter $=-0.1(2)$. The Hooft parameter was 0.05(11) for 4158 Bijvoet pairs. Crystallographic data (excluding structure factors) have been deposited at the Cambridge Crystallographic Data Centre under the reference number CCDC 1020104. Copies of the data can be obtained free of charge on application to the CCDC, 12 Union Road, Cambridge CB2 IEZ, UK. Fax: + 44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk. Pestalpolyol B (2): Colorless amorphous solid; m.p. 195-196 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{D}^{20}=+2.81(c=0.07, \mathrm{MeOH}) ;$ UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon): 233$ (4.08); IR (KBr) $v_{\text {max }}: 3408,2968,1675,1642,1453,1373$, $1020 \mathrm{~cm}^{-1}$; NMR data see O Table 1; ESI-MS: 429 [M + Na] ${ }^{+}$; HR-ESI-MS: 429.2975 ([M + Na] ${ }^{+}$, calcd. 429.2981).
Pestalpolyol C (3): Colorless amorphous solid; $[\alpha]_{D}^{26}=+17.05$ $(c=0.07, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon): 233$ (4.20); NMR data see O Table 2; ESI-MS: 557 [M + Na]+; HR-ESI-MS: 557.4189 ([M + $\mathrm{Na}]^{+}$, calcd. 557.4182).
Pestalpolyol D (4): Colorless amorphous solid; $[\alpha]_{D}^{26}=+19.70$ $(c=0.22, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon): 232$ (4.19); NMR data see © Table 2; ESI-MS: 571 [M + Na] ${ }^{+}$; HR-ESI-MS: 571.4344 ([M + $\mathrm{Na}]^{+}$, calcd. 571.4338).

Biological activities

The antifungal activities were assayed against phytopathogenic fungi (G. graminis, F. moniliforme, V. cinnabarium, and P. oryzae) and antibacterial activities were assayed against P. solanacearum, S. aureus, and S. typhimurium ATCC 6539 using a disk diffusion method [14]. The method of nematicidal activity against Panagrellus redivivus and Caenorhabditis elegans was based on the literature [15]. Antitumor activity was measured by the MTT method [16]. Five cell lines were selected for testing (leukemia cell line HL-60, hepatocarcinoma cell line SMMC-7721, lung adenocarcinoma cell line A-549, breast cancer cell line MCF-7, and colon cancer cell line SW480). Cisplatin was used as a positive control and displayed IC_{50} values of $1.3 \mu \mathrm{M}$ (HL-60), $6.7 \mu \mathrm{M}$ (SMMC7721), $6.2 \mu \mathrm{M}$ (A-549), $16.3 \mu \mathrm{M}$ (MCF-7), and $12.9 \mu \mathrm{M}$ (SW480).

Supporting information

Supplementary 1D and 2D NMR spectroscopic data of compounds 1-4 are available as Supporting Information.

Acknowledgements

This work was supported by the National Basic Research Program of China (973 program, 2013CB127505), the NSFC (31170061, 31260177), and the Applied Basic Research Foundation of Yunnan Province (2013FA018). We acknowledge the Department of Instrumental Analysis of Kunming Institute of Botany for measuring the optical rotations, UV, NMR, and mass spectra.

Conflict of Interest

V
There are no conflicts of interest of any authors with respect to this work.

References

1 Cole RJ, Schweickert MA. Handbook of secondary fungal metabolites, Volumes I-III. San Diego, USA: Academic Press; 2003
2 Hopkins KE, McQuilken MP. Characteristics of Pestalotiopsis associated with hardy ornamental plants in the UK. Eur J Plant Pathol 2000; 106: 77-85
3 Taylor JE, Crous PW, Palm ME. Foliar and stem fungal pathogens of Proteaceae in Hawaii. Mycotaxon 2001; 78: 449-490
4 Keith LM, Velasquez ME, Zee FT. Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava, in Hawaii. Plant Dis 2006; 90: 16-23
5 Maharachchikumbura SS, Guo LD, Chukeatirote E, Bahkali AH, Hyde KD. A multi-locus backbone tree for Pestalotiopsis, with a polyphasic characterization of 14 new species. Fungal Divers 2011; 50: 167-187
6 Xu J, Ebada SS, Proksch P. Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers 2010; 44: 15-31
7 Lee JC, Strobel GA, Lobkovsky E, Clardy J. Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 1996; 61: 3232-3233
8 Liu L, Li Y, Liu SC, Zheng ZH, Chen XL, Zhang H, Guo LD, Che YS. Chloropestolide A, an antitumor metabolite with an unprecedented spiroketal skeleton from Pestalotiopsis fici. Org Lett 2009; 11: 2836-2839
9 Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Ming Wah Chau R. Isopestacin, an isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 2002; 60: 179-183
10 Dalton DT, Postman JD, Hummer KE. Comparative infectivity of Cronartium ribicola aeciospores and urediniospores in genotypes of Ribes nigrum. Plant Dis 2010; 94: 461-464
11 Xie J, Li J, Yang YH, Chen YH, Zhao PJ. Two new ambuic acid analogs from Pestalotiopsis sp. cr013. Phytochem Lett 2014; 10: 291-294
12 Cimino G, Sodano G, Spinella A. Aglajne-1, a polypropionate metabolite from the opisthobranch mollusk Aglaja depicta: Determination of car-bon-carbon connectivity via long-range ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ couplings. Tetrahedron Lett 1985; 26: 3389-3392
13 Kasai Y, Komatsu K, Shigemori H, Tsuda M, Mikami Y, Kobayashi J. Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 2005; 68: 777-779
14 Espinel-Ingroff A, White T, Pfaller MA. Antifungal agents and susceptibility tests. In: Murray PR, editor. Manual of clinical microbiology, 7th edition. Washington DC: American Society for Microbiology; 1999: 1640-1652
15 Li GH, Duan M, Yu ZF, Li L, DongJY, Wang XB, Guo JW, Huang R, Wang M, Zhang $K Q$. Stereumin A-E, sesquiterpenoids from the fungus Stereum sp. CCTCC AF 207024. Phytochemistry 2008; 69: 1439-1445
16 Su J, Zhao PJ, Kong LM, Li XY, Yan JM, Zeng Y, Li Y. Trichothecin induces cell death in NF- $\kappa \mathrm{B}$ constitutively activated human cancer cells via inhibition of IKK β phosphorylation. PLoS One 2013; 8: e71333

