A new 3,4-seco-oleanane-type triterpenoid with an unusual enedione moiety from Hypericum ascyron

Chunmei Chena,1, Guangzheng Weia,1, Hucheng Zhua, Yi Guoa, Xiao-Nian Lib, Jinwen Zhangc, Yanfei Liud, Guangmin Yaoa, Zengwei Luoa, Yongbo Xuea,*, Yonghui Zhanga,*

a Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
b State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China
c Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
d The Central Hospital of Wuhan affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

A R T I C L E I N F O

Article history:
Received 16 March 2015
Accepted in revised form 6 April 2015
Available online 12 April 2015

Keywords:
Hypericum ascyron
Triterpenoid
3,4-seco-oleanane
Absolute configuration

A B S T R A C T

A novel 3,4-seco-oleanane-type triterpenoid named 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid (1), bearing an unusual enedione moiety, was isolated from the aerial parts of Hypericum ascyron, together with a known feiedelane-type triterpenoid friedelin (2). The structure of 1 with absolute configuration was elucidated on the basis of spectroscopic methods and a single-crystal X-ray diffraction analysis.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The genus Hypericum, including about 400 species, is widely distributed in the whole world \cite{1}. Some plants of the genus have been used as traditional Chinese medicine for a long time, such as Hypericum perforatum (St. John’s wort), Hypericum wightianum, Hypericum japonicum, and Hypericum ascyron \cite{1}. Phytochemical investigations on plants of this genus have revealed polycyclic polyprenylated acylphloroglucinols (PPAPs) as their main secondary metabolites \cite{2}, which are a class of natural products possessing intriguing structures and diverse biological activities \cite{2}. Beside PPAPs, dianthrone derivatives \cite{3}, rottlerin-type compounds \cite{4–6}, and xanthones \cite{7,8} are also reported from this genus.

In the course of our continuous program for bioactive metabolites from the genus Hypericum \cite{9,10}, the aerial parts of H. ascyron, collected from Dabie Mountain areas, were phytochemically investigated, which led to the isolation of a new (3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid (1), and a known triterpenoids (friedelin, 2) (Fig. 1). To the best of our knowledge, triterpenoids, with only a few examples, were rarely reported from this genus \cite{11–13}. In addition, this is the first time to report 3,4-seco-oleanane-type and friedelan-type triterpenoids from the genus Hypericum. In this paper, we report the isolation and structure elucidation of compounds 1 and 2, as well as the cytotoxic evaluation of 1 against five human cancer cell lines.

2. Experimental

2.1. General

Optical rotations were determined with a Perkin-Elmer 241 polarimeter. UV and FT-IR spectra were measured using a Varian Cary 50 and a Bruker Vertex 70, respectively. NMR
The aerial parts of *H. ascron* (50 kg) were extracted with 95% ethanol (200 L, four times). After concentration, the extract was suspended in H$_2$O and partitioned with petroleum ether and chloroform, successively. The petroleum ether-soluble extract (780 g) was separated by a silica gel column chromatography (CC, 5 kg, 20 × 120 cm; petroleum ether–acetone, 50:1 → 0:100) to furnish seven fractions (1–7). Fr. 6 (32 g) was decolorized on MCI gel CC, eluting with 90% MeOH in H$_2$O, and then subjected to a silica gel CC (petroleum ether–acetone 30:1 → 0:1) to give five subfractions (Fr.6.1–Fr.6.5). Fr.6.4 was chromatographed on Sephadex LH-20 (CH$_3$OH) to afford four additional fractions Fr.6.4.1–Fr.6.4.4. Subfraction Fr.6.4.2 was then separated by ODS eluting with CH$_3$OH in H$_2$O from 50% to 100% to yield Fr.6.4.2.1–Fr.6.4.2.6. Fr.6.4.2.4 was purified with repeated semipreparative HPLC (80% CH$_3$OH and 75% CH$_3$CN) to give compound 1 (2 mg). The crystals of Fr. 7 were filtered and recrystallized to give compound 2 (14 mg).

$$\text{3.4} \text{ seco} – \text{ olean} – 13(18) \leftarrow \text{ cembr–12,19} \leftarrow \text{ dione} – 3 \leftarrow \text{ 13–ocicaridin}$$

Colorless crystal (CH$_3$OH); [α]20_D = 50.4 (c = 0.09, CH$_3$OH); UV (CH$_3$OH) λ_{max} (log ε) = 203 (3.70) and 257 (3.64) nm; IR ν_{max} = 3432, 1738, 1687, 1667, 1470, 1458, 1389, and 1172 cm$^{-1}$; HREIMS [M + Na]$^+$ m/z 493.3237 (calcld for C$_{30}$H$_{48}$O$_{12}$Na, 493.3294); for 1H NMR (400 MHz) and 13C NMR (100 MHz) data see Table 1; crystallographic data for the structure of 1 have been deposited in the Cambridge Crystallographic Data Centre (CCDC deposition number: 981814).

Friedelin

$$\text{3.4} \text{ seco} – \text{ olean} – 13(18) \leftarrow \text{ cembr–12,19} \leftarrow \text{ dione} – 3 \leftarrow \text{ 13–ocicaridin}$$

2.4. X-ray crystallographic analysis of compound 1

Crystal data for compound 1: C$_{30}$H$_{48}$O$_{12}$, $M = 470.67$, monoclinic, $a = 9.3962$ (2), $b = 12.5915$ (3), $c = 11.2401$ (3), $\alpha = 90.00^\circ$, $\beta = 93.6990$ (10)$^\circ$, $\gamma = 90.00^\circ$, $V = 1327.07$ (6) Å3, $T = 100$ (2) K, space group P2$_1$, $Z = 2$, μ (CuK$_\alpha$) = 0.594 mm$^{-1}$, 12007 reflections measured, 4399 independent reflections ($R_{int} = 0.0444$). The final R_I values were 0.0454 ($R > 2\sigma (I)$). The final R_I values were 0.0454 ($R > 2\sigma (I)$). The final R_I values were 0.0454 ($R > 2\sigma (I)$). The final R_I values were 0.0454 ($R > 2\sigma (I)$). The final R_I values were 0.0454 ($R > 2\sigma (I)$). The final R_I values were 0.0454 ($R > 2\sigma (I)$).

Flack parameter = 0.04 (19). The Hooft parameter is 0.06 (6) for 1983 Bijvoet pairs.

2.2. Plant material

The aerial parts of *H. ascron* were collected from Dabie Mountain areas, Hubei Province, China, in October 2012, and identified by Professor Jianping Wang. A voucher specimen (ID 20121012) has been deposited with Herbarium of Materia Medica, Faculty of Pharmacy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
Compound 1 was isolated as colorless crystals. The molecular formula was assigned as C_{30}H_{48}O_{4} based on the pseudomolecular ion peak at m/z 493.3237 ([M + Na]^{+}, calcd for C_{30}H_{48}O_{4}Na, 493.3294) in the HRESIMS, indicating eight degrees of unsaturation. The IR spectrum showed absorption bands at 1738, 1687, and 1667 cm\(^{-1}\), suggesting the presence of carboxy and carbonyl groups. The \(^1\)H NMR spectrum (Table 1) exhibited eight methyl signals at 0.82 (3H, d, J = 6.8 Hz), 0.90 (3H, s), 0.92 (3H, d, J = 7.0 Hz), 0.98 (3H, s), 1.01 (3H, s), 1.08 (3H, s), 1.12 (3H, s), and 1.26 (3H, s). The \(^1\)C NMR spectrum (Fig. 2) and DEPT spectra displayed 30 carbon signals assignable to eight methyls, nine methylenes, three methines, five nonoxygenated quaternary carbons, two carbonyls (\(\delta_c\) 205.4 and 211.3), a carbonyl (\(\delta_c\) 176.8), and two quaternary olefinic carbons (\(\delta_c\) 145.1 and 148.2). Since four degrees of unsaturation were occupied by the carbonyl, the carboxy, and the olefinic groups, compound 1 was deduced to be a triterpenoid possessing a tetracyclic nucleus.

Detailed analyses of the \(^1\)H–\(^1\)H COSY spectrum and trace HMBC correlations (Fig. 2) confirmed the presence of cyclic rings B to E of an oleane-type triterpenoid. The HMBC correlations from CH\(_2\)-29, CH\(_2\)-30, and H-21 to C-19, from CH\(_2\)-28 and H-22 to C-18, from CH\(_2\)-27 and H-11 to C-13, and from H-11 to C-12 revealed the location of the two carbonyls at C-12 and C-19, and double bond between C-13 and C-18, which formed an unusual enedione moiety as the known compound olean-13(18)-ene-12,19-dione-3-oic acid, which is the first 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid, and which is the first 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid, which is the first 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid, which is the first 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid [14]. The appearance of a 3,4-seco-type A ring was deduced to be the same as 3,4-seco-olean-18-en-3,28-dioic acid [15] by \(^1\)H–\(^1\)H COSY and HMBC correlations as follows: \(^1\)H–\(^1\)H COSY peaks of CH\(_2\)-23/H-4, CH\(_2\)-24/H-4, H-4/H-5, and H-1/H-2; HMBC correlations from CH\(_2\)-23 and CH\(_2\)-24 to C-5, H-2 to C-3, and CH\(_2\)-25 to C-1, C-5, and C-10. Thus, the planar structure of compound 1 was elucidated.

The relative configuration of 1 was primarily determined by comparison of its \(^1\)H and \(^13\)C NMR with the data of this compound in literature class and this assignment was consistent with biogenetic considerations. However, further solid evidence was necessary for its absolute configuration determination. Finally, a crystal suitable for X-ray diffraction experiment (Fig. 3) was obtained from CH\(_3\)OH, which enabled us to determine the structure and absolute configuration of compound 1 conclusively (Flack parameter = 0.04; Hooft parameter = 0.06). Herein, the structure of 1 was established as 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid, which is the first 3,4-seco-olean with an unusual enedione moiety.

The known triterpenoid, friedelin (2), was identified by comparison of its NMR data and optical rotation value with those reported in the literature [16].

Compound 1 was tested for its cytotoxic activity against five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), and it showed no activity to all tested cancer cell lines up to a concentration of 40 μM.

Table 1

\(^1\)H and \(^13\)C NMR data for compound 1.\(^a\)

<table>
<thead>
<tr>
<th>No.</th>
<th>(\delta_H) (J in Hz)</th>
<th>(\delta_C)</th>
<th>No.</th>
<th>(\delta_H) (J in Hz)</th>
<th>(\delta_C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.73 (1H, m)</td>
<td>32.4 16</td>
<td>1</td>
<td>1.81 (1H, m)</td>
<td>36.7</td>
</tr>
<tr>
<td>2</td>
<td>1.65 (1H, m)</td>
<td>1.56 (1H, m)</td>
<td>2</td>
<td>2.19 (2H, m)</td>
<td>27.8 17</td>
</tr>
<tr>
<td>3</td>
<td>1.90 (1H, m)</td>
<td>25.3 19</td>
<td>4</td>
<td>4.74 (2H, t)</td>
<td>46.3</td>
</tr>
<tr>
<td>5</td>
<td>1.06 (1H, m)</td>
<td>18.0 21</td>
<td>6</td>
<td>1.46 (2H, m)</td>
<td>37.7 22</td>
</tr>
<tr>
<td>7</td>
<td>1.42 (1H, m)</td>
<td>32.7 22</td>
<td>8</td>
<td>41.2 23</td>
<td>24.8</td>
</tr>
<tr>
<td>9</td>
<td>1.87 (1H, m)</td>
<td>4.09 24</td>
<td>10</td>
<td>4.03 25</td>
<td>19.4</td>
</tr>
<tr>
<td>11</td>
<td>2.47 (1H, dd, 15.7, 13.3)</td>
<td>39.7 26</td>
<td>12</td>
<td>205.4 27</td>
<td>20.5</td>
</tr>
<tr>
<td>13</td>
<td>145.1 28</td>
<td>23.1</td>
<td>14</td>
<td>45.7 29</td>
<td>24.5</td>
</tr>
<tr>
<td>15</td>
<td>2.82 (1H, m)</td>
<td>25.0 30</td>
<td>1.19 (1H, dr, 13.7, 3.4)</td>
<td>24.7</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) 400 MHz for \(^1\)H and 100 MHz for \(^13\)C, in CDCl\(_3\).

3. Results and discussion
4. Conclusions

As far as we known, triterpenoids were rarely reported from plants of this genus, with no more than ten examples, including lupine-type triterpenoids from *Hypericum balearicum* [11], lupine- and oleanane-type triterpenoids from *Hypericum geminiflorum* [12], and amyrin-type triterpenoids from *H. perfratum* [13]. Therefore, this is the first identification of triterpenoids with 3,4-seco-oleanane and friedelane skeletons from this genus. Moreover, 3,4-seco-olean-13(18)-ene-12,19-dione-3-oic acid (1) itself possesses unexpected functionalities of 3,4-seco A-ring and a rare enedione moiety, which make it to be a distinctive member of oleanane-type triterpenoids. It is notable that for most 3,4-seco-oleane-type triterpenoids, C-4 is an oxygenated quaternary carbon, and in the case of 1, it is an unusual methine. The interesting structural characteristics of 1 together with its exclusive origin of the genus *Hypericum* make it outstanding from the family of oleane-type triterpenoids.

Acknowledgments

The authors would like to thank the Analytical and Testing Center at Huazhong University of Science and Technology for assistance in conducting ECD and IR analyses. This work was financially supported by the National Natural Science Foundation of China (31370372, 81202423 and 31200258), New Century Excellent Talents in University, State Education Ministry of China (NCET-2008-0224), and the Natural Science Foundation of Hubei Province of China (2012FFB02333).

Appendix A supplementary data

Supplementary data associated with this article including HRESIMS, 1H and 13C NMR, IR, UV, and CD spectra can be found online at http://dx.doi.org/10.1016/j.fitote.2015.04.009.

References