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a b s t r a c t

Matsutake (Tricholoma spp.) are a group of commercially important mushrooms that are

increasingly threatened by over-collection. Ecologically sustainable management of matsu-

take has been hindered by the lack of essential information such as reliable distribution

maps. Although a variety of spatial distribution models have been applied to map many

different plants, this has rarely been attempted for mushrooms. In this study, we employed

a logistic regression and a GIS expert system to model the fine-scale spatial distribution

of matsutake in Yunnan, southwest China. Both models predicted mushroom habitat to

an accuracy acceptable for resource management. The overall mapping accuracy of the

GIS expert system was slightly better than the logistic regression model (70.37% versus

65.43%). Furthermore, unlike the logistic regression model, developing the GIS expert sys-

tem required no field-based samples. This has important practical implications because it is

very difficult to survey and sample mushrooms and other non-wood forest products (NWFP),
GIS expert system

Northwest Yunnan

which are usually inconspicuous species and/or lower plants. Therefore, when adequate

samples are not available, incorporating local expert knowledge can help make better-

t decisions and provide an affordable habitat identification tool.

room industry harvests 250–400 tonnes per year, with a value
China informed managemen

1. Introduction

As a seasonal delicacy favored by the Japanese, matsu-
take have become a commercially important wild mushroom
(Wang et al., 1997). Consumption in Japan is approximately
3000 tonnes per year, of which Japan produces 1000 tonnes in
a good year (Van On, 1993); the remainder is imported mainly
from Korea, China, and North America. “Matsu-take” trans-
lates literally as “pine-mushroom” from the Japanese. Origi-

nally, matsutake referred specifically to Tricholoma matsutake,
but subsequently the name refers to a group of similar mush-
rooms (Hosford et al., 1997). While the taxonomy of these

∗ Corresponding author. Tel.: +86 871 5212143; fax: +86 871 5223909.
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mushrooms is still under debate, it is generally accepted that
there are 15 species (and one variety) distributed worldwide
(Liu et al., 1999; Zang, 1990). Matsutake mushrooms are soil-
borne and perennial mycorrhizal fungi. They develop a sym-
biotic association with the roots of specific trees (James, 1998;
Ogawa, 1976).

Collection of matsutake can generate significant income,
for example, in Canada, the British Columbian wild mush-
jxu@icimod.org (J. Xu).

of US$ 25–45 million (Wills and Lipsey, 1999). Matsutake are
also important to rural livelihoods in many parts of the world
(Kranabetter et al., 2002; Pilz and Molina, 2002). Naturally
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nough, species that command high prices, such as matsutake
nd truffles, are increasingly at risk from over-exploitation
nd/or improper ecosystem management (Larsen et al., 2000;
ewton et al., 2003; Van On, 1993). This is certainly the case

n northwest Yunnan (the subject of our study), where the
roduction of matsutake declined from 530 tonnes in 1995 to
72 tonnes in 2000 (Xu and Ribot, 2004). Consequently, the T.
atsutake has been given protected status (National Grade II)

y CITES China (KIB-CAS, 2003). Hence, growing concerns have
ocused on how to properly use and protect the mushrooms.
evelopment of sustainable harvest plans requires knowl-
dge of mushroom distribution; however, this information is
ften scarce or of poor quality (FAO, 2002; Larsen et al., 2000;
ehmann et al., 2002; Vantomme et al., 2002; Zaniewski et
l., 2002). Kranabetter et al. (2002) estimated the habitat of
merican matsutake (Tricholoma magnivelare) using aerial pho-

os in collaboration with summarized ecological descriptions.
uch studies are a seminal attempt to investigate mushroom
istribution, but more work is required to develop better spa-
ial models of these valuable resources in complex landscape

osaics.
Spatial models have been widely used to predict the dis-

ribution patterns of many species and plant communities.
hese models have been intensively reviewed by Franklin

1995), Guisan and Zimmermann (2000) and Austin (2002).
enerally these studies have focused on dominant or over-
torey species (Iverson et al., 1999), only a few of them consid-
red shrubs (Franklin, 1998), ferns (Zaniewski et al., 2002) and
ryptogams (Peltoniemi et al., 2005). To our knowledge, few
ave involved mushrooms. In the present study, we attempted
o model the spatial distribution of matsutake at a fine scale
n complex mountainous terrain in Shangri-La County, north-

est Yunnan. In order to test the validity of the output, we

ompared two models: a logistic regression and a GIS expert
ystem. The logistic regression was used because it is: (a) a
idely used and proven statistical approach (Aspinall, 2002;

Fig. 1 – Location and satellite
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Manel et al., 1999; Stephenson et al., 2006); (b) suitable for
regression when the dependent variable is binary in nature;
and (c) easily implemented with simple programmes in GIS
software packages. The GIS expert system was used to inte-
grate existing (local) knowledge into a model; it is then com-
pared against the statistical model to estimate the robustness
of this approach. To build the models it is critical to identify
environmental factors that are likely to influence matsutake
distribution.

2. Study area

2.1. Northwest Yunnan

Located in the southern mountain region (Hengduan Moun-
tains) of the Eastern Himalayas, northwest Yunnan is in a tran-
sitional zone between the Qinghai-Tibet and Yunnan-Guizhou
Plateaus. Three major rivers, the Lancang (Mekong), Jinsha
(upper reaches of the Yangtze) and the Nu (Salween), run par-
allel in a southerly direction. High mountains and deep gorges
dominate the regional landscape, with the elevation ranging
from 6740 m at the summit of Kawagebo to about 500 m in the
lower parts of the Nujiang valley. The variation of topography
and latitude results in a high diversity of microclimates. Con-
sequently, northwest Yunnan contains 40% of the province’s
15,000 plant species and is recognized as a global biodiversity
hotspot (Myers et al., 2002).

2.2. Jidi village

This study was centered on Jidi administrative village

(27 43 24 –28 9 54 N, 99 32 12 –99 43 17 E) (Fig. 1), one of
the most productive areas for T. matsutake in Shangri-La
County, northwest Yunnan. The study area covers an area
of 214.58 km2 with elevations varying from 3100 to 4200 m

image of the study area.
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Table 1 – Environmental variables used to analyse matsutake distribution

Variables No. of observations Abbreviation Data type Distribution

Matsutake P/A 222 M Binary Binomial
Forest type 216 F Category –
Elevation (m) 175 ELE Numeric Approximately normal
Slope (◦) 180 S Numeric Approximately normal
Aspect (◦) 174 A Numeric Approximately normal
Surface depth (cm) 120 SD Numeric Skewed
Litter cover (%) 108 LTC Numeric Skewed
Average tree height (m) 142 H Numeric Skewed

T
B
S

The relationships between environmental variables and
mushroom distribution were examined with three standard
statistical tests: (a) Spearman rank order test; (b) Kendall �-
Tree cover (%) 162
Tree basal area (m2/ha) 119
Shrub cover (%) 118

over the generally hilly terrain. Vegetation is predominantly
forest, generally of pine, fir, oak, or combinations thereof.
Flatter regions in lower elevations, which are relatively
scarce, are used for agriculture and pasture. The climate
is monsoon-influenced, clearly divided into a dry season
(November–May) and a wet season (June–October). Data col-
lected from the Meteorology Observation Station of Shangri-La
County (located 20 km south of Jidi village, elevation 3200 m;
data averaged from 1971 to 2002) shows an annual mean
rainfall of 654 mm. Temperatures are generally mild, though
winters are cool and snow may be persistent. The maximum
monthly average of 13.5 ◦C occurs in July, while monthly aver-
age temperatures are below zero from December through
February. This village includes 13 subordinate “natural vil-
lages” with a total population of approximately 1600. All the
residents are Tibetans performing agriculture and animal hus-
bandry. In recent decades, commercial harvest of matsutake
has become the major income source for the community.

3. Methods

3.1. Sampling design and field measurement

The problems of field sampling for mushrooms are manifest.
Firstly, the dissected landscape, aspect, soil conditions and
vegetation cover may all greatly influence mushroom distri-
bution. Moreover, even when probable mushroom sites have
been identified it is difficult to be definite as the vegetative
hyphae are embedded in the soil, and, even during the rare
fruiting periods, the above ground mushrooms (sporocarps)
are often covered by litter, herbs, or mosses. Without any
preliminary knowledge or experience, finding sporocarps is
not an easy task, thus our data collection (August–October,
2003) was assisted by local mushroom pickers. Sample sites
were designated as either “presence” where mushrooms were
found, or “absence” in sites identified by mushroom pickers
as places where matsutake had never been found. Two mea-
sures were taken in order to mitigate subjective bias and keep
the sampling as close to random as possible. First, six villages
were randomly selected for the survey, in order to include the
variance among villages. Secondly, seven mushroom pickers

were selected as guides in order to minimise site preferences
or bias introduced by individual guides.

In each field sample plot, topographic features (elevation,
slope, aspect); floristic composition of different strata (tree
C Numeric Approximately normal
A Numeric Skewed
HC Numeric Skewed

layer, shrub layer); vegetation height; forest canopy cover;
litter cover (large woody debris, leaves, needles, and humic
material); substrate depth (including litter cover and top layer
soil); and presence/absence of matsutake were recorded. For-
est canopy cover and average tree height were visually esti-
mated in a 25 m × 25 m plot. Shrub cover was estimated within
a 5 m × 5 m subplot, and litter cover was estimated within a
2 m × 2 m subplot. A GPS connected with a hand-held com-
puter (HP-Ipaq) was used to acquire the spatial location of
sample points and record each measurement. Site position
was identified by an average of 30 readings. In total, 222 field
observations were recorded. Table 1 lists the environmental
variables and their characteristics, where matsutake presence
or absence (P/A) is the dependent variable and the remaining
are independent variables.

3.2. Data preparation

Data used in this study were a forest type map, DEM (digital
elevation model), slope, aspect, terrain position, litter cover
map and 222 field measurements. The forest type map was
produced using a Landsat 7 ETM + image (path/row: 132/41,
passing date February 13, 2002) (Yang, unpublished data). The
DEM was generated using digitized contour lines and high
points from topographic map sheets, from which slope and
aspect were derived. Further, “terrain position” (such as chan-
nels, ridges and planes), slope and aspect were calculated
using the DEM and the “topographic feature” module in ENVI
4.0 software.

Although 222 samples were recorded in total, bad samples
with missing values1 were discarded. Only 163 samples were
actually used, half of which (n = 82) were randomly selected for
building the logistic regression model. The rest of the data set
(n = 81) were used for model assessment and validation.

3.3. Statistical analysis of environmental variables
1 At each sample plot, the values of all 11 variables (refer to
Table 1) should be recorded. The so-called “bad samples” refers
to those samples that have one or more variable values missing.
In regression analysis, samples with missing values are automat-
ically excluded.
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Table 2 – Coefficients for each forest type in the logistic
regression model

Forest type Coefficients

Non-forest −7.918
Broadleaved −8.443
Fir −8.807
Oak 0.659
Oak-pine-mixed 0.204
Pine 0
e c o l o g i c a l m o d e l l i n

est; and (c) discriminant function analysis. A Kruskal–Wallis
est together with a Mann–Whitney U test were employed to
est significant differences among sub-classes of each vari-
ble. The result was used for reference when formulating the
IS expert rules.

.4. Preparing the litter cover map

he statistical analysis suggested that litter cover is important
n predicting matsutake distribution. Hence a litter cover map
as produced using a generalized linear regression model
ith the following input data: forest type map, elevation, slope

nd aspect. Backward stepwise procedure was used to select
xplanatory variables. Significance values for “enter” and
remove” were set at 0.05 and 0.06, respectively. A model with
orest type and slope as input data was established (R2 = 0.83,
= 108, p < 0.001). This was executed using the “model maker”
odule in the ERDAS IMAGINE 8.6 software.

.5. Modelling distribution of matsutake with logistic
egression

.5.1. The logistic regression
ogistic regression describes the relationship between the
esponse and the linear sum of the predictor variables. Using
he equation below, the presence/absence of matsutake is
ransformed into a continuous probability y ranging from 0
o 1. Values close to 1 represent high probability of pres-
nce, whereas, values close to 0 represent high probability of
bsence.

= exp(b0 + b1x1 + b2x2 + · · · + bnxn)
1 + exp(b0 + b1x1 + b2x2 + · · · + bnxn)

here y is the probability, xn the explanatory variable, bn the
oefficient of xn, and exp is an exponential function.

.5.2. Building the logistic regression model
reliminary variable selection was carried out with the assis-
ance of the previous statistical analyses of environmental
ariables using 82 samples. The best model was selected based
n two criteria: approximate variance explained (Nagelkerka
2) and goodness of fit (Hosmer and Lemeshow test statistic;
or details refer to SPSS Inc., 2001).

.5.3. Spatial implementation of logistic regression model
patial implementation of the model was achieved using the
model maker” module in ERDAS IMAGINE 8.6 software. The
orest type map was recoded to the numeric coefficients that
epresented the forest types; for instance, pixels with oak
orest are recoded with its coefficient, 0.659. Coefficients of
arious forests are listed in Table 2. The probability surface
f matsutake distribution was calculated as the output of the

ogistic regression.

.5.4. Presence/absence transformation and sensitivity
nalysis for the threshold levels

odel performance was evaluated on the basis of pres-

nce/absence, thus probability values (0–1) were converted to
resence or absence at set thresholds. Arbitrarily, presence of
n individual is assumed at probability values of greater than
Note that pine forest was used as the standard and hence the zero
value.

or equal to 0.5. However, the 0.5 value may not be optimal in
all cases (Manel et al., 1999), therefore, we expanded the sen-
sitivity analysis to consider threshold levels from 0.4 to 0.8.

3.6. Modelling distribution of matsutake with a GIS
expert system

3.6.1. A GIS expert system
GIS expert systems are computer programs that simulate the
behavior of human experts—they are designed to solve prob-
lems related to geographic information systems (Skidmore et
al., 1996; Stock, 1987). The GIS expert system used in this study
was developed under ENVI-IDL environment by the Natural
Resource Department at the International Institute for Geo-
informatics Science and Earth Observation, the Netherlands.
Bayesian theory (Aspinall, 1992; Aspinall, 1993; Skidmore,
1989; Skidmore et al., 1996) was used as the inference engine.
In the GIS expert system, we infer the presence of matsutake at
a certain location (a hypothesis) based on available evidence.

3.6.2. Input data and knowledge based rule formulation
The selection of environmental variables and formulation of
rules was based on the availability of the data and the integra-
tion of knowledge from several sources, including: (a) litera-
ture (Liu et al., 1999; Zang, 1990); (b) local knowledge acquired
through discussion with mushroom pickers; (c) personal field
observations; and (d) results from statistical analyses. Where
there was disagreement between different sources, a subjec-
tive decision was made based on field knowledge. We used
the following data layers: (a) litter cover; (b) terrain position;
(c) slope; (d) DEM; (e) aspect; and (f) forest type. Table 3 shows
the detailed probability estimates for these criteria. The sys-
tem requires users to input a set of rules that link a hypothesis
to the evidence. These rules include a priori estimates of prob-
ability and the initial conditional probability. The a priori prob-
ability can be assigned based on knowledge (Skidmore, 1989)
or from the estimation of an expert. In this case, we assigned it
based on field knowledge. For instance, a priori probability for
presence is 0.60 because approximately 60% of the study area
is potential matsutake habitat. The initial conditional proba-
bility is the probability (as estimated by the user) of presence
or absence (hypothesis) Sa (a = 1, . . ., n) at location (or pixel) Xij

by given a piece of evidence.
3.6.3. Sensitivity analysis for a priori probabilities
As is the case for the logistic regression, users are requested to
input a priori probability values to initiate the GIS expert sys-
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tem process. Examining the sensitivity gives a better under-
standing of the model and output, therefore, sensitivity anal-
ysis was performed across a range of a priori probabilities from
0.01 to 0.99.

3.7. Model evaluation and comparision

Overall mapping accuracy, sensitivity and specificity, Kappa
coefficient and Z-test were employed to evaluate and compare
the performance of the models. An independent sample set
(n = 81) was used for model validation and an error matrix was
generated. Overall accuracy is defined as the proportion of the
total number of correctly predicted sites to the total number of
testing samples (Fielding and Bell, 1997). For the binary error
matrix, sensitivity and specificity are used as the measure-
ments of accuracy in predicting presence and absence, respec-
tively (Fielding and Bell, 1997). Sensitivity is defined as the
proportion of correctly predicted presence to the total num-
ber of presence in testing samples; specificity is the proportion
of correctly predicted absence to the total number of absence
in testing samples (Fielding and Bell, 1997). The Kappa coeffi-
cient and its variance (Cohen, 1960; Congalton, 1991; Skidmore
et al., 1996) were computed. Differences between classifica-
tions were tested through a z-statistic using Kappa coeffi-
cients (Cohen, 1960; Congalton, 1991; Skidmore et al., 1996).
Apart from statistical evaluation, a further visual assess-
ment based on field knowledge was undertaken to investi-
gate how well a produced map indicated the actual ground
situation.

4. Results

4.1. Environmental variables related to matsutake
distribution

All three statistical tests show that forest type, litter cover
and elevation are important environmental variables for mat-
sutake distribution (Table 4). Comparatively weaker evidence
(with support of only one or two tests) suggests that aspect,
slope, tree height and shrub cover also influence matsu-
take distribution. The results of Kruskal–Wallis ANOVA test
(Appendix 1), and Mann–Whitney U test (Appendix B) showed
elevation, slope, litter cover, tree height and tree cover to be
significant. These results were further used to develop the
expert rules.

4.2. The logistic regression model

Based on above analysis, we used forest type, litter cover, and
elevation to build the logistic regression model. The individual
explanatory variables ranked as follows: forest type was the
most important, explaining 68% of the variance; litter cover,
explained 17.3%; and elevation, explained 6.8%. All kinds of
data combinations of the selected explanatory variables were

fed into the model and the results were compared. By examin-
ing the variance explained and goodness of fit, the model with
all these three explanatory variables as input (see below) was
selected as the best, since it explained the highest variance
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Table 4 – Correlation coefficients and p-value of discriminant function analysis of matsutake and environmental variables

ELE S A SD LTC H BA SHC TC F

Spearman rank order correlations 0.22* −0.13 0.13 0.06 0.21* −0.02 0.17 −0.15 0.06 −0.46*

Kendall � correlations 0.18* −0.11* 0.11* 0.05 0.18* −0.02 0.14* −0.12* 0.05 −0.42*

p-Value of discriminant function analysis 0.008* 0.416 0.001* 0.853 0.000* 0.006* 0.150 0.271 0.690 0.000*

The full names of the variables can be found in Table 1.
∗ Significant (p < 0.05).

Table 5 – Nagelkerka R2 and Hosmer and Lemeshow statistic for logistic regression with different input data (n = 82)

Variables used F LTC E F, LTC F, LTC, E

Nagelkerka R2 0.68 0.173 0.068 0.726 0.732
Hosmer and Lemeshow statistic 0.999* 0.023 0.382* 0.337* 0.94*

(

M

w
f
c

4

T
a
y
t
T
t

F
p

The full names of the variables can be found in Table 1.
∗ Significant goodness of fit (P < 0.05).

73.2%) and adequately fitted the data (0.94) (Table 5).

= exp(−12.616 + F + 0.043LTC + 0.003ELE)
1 + exp(−12.616 + F + 0.043LTC + 0.003ELE)

here M is the probability of matsutake presence, F the land
orest type, LTC the litter cover, and ELE is the elevation. The
oefficients for each forest type are listed in Table 2.

.3. Model performance and sensitivity

he maps produced by the two models showed some vari-
tion (Fig. 2). In terms of accuracy, the GIS expert system

ielded a slightly better result in overall mapping accuracy
han the logistic regression model (70.37% versus 65.43%; see
ables 6 and 7). However, the Z-test (for Kappa) statistic shows
hat there is no significant difference in the accuracy level of

ig. 2 – Presence/absence of matsutake predicted by: (a) the logis
riori for absence = 0.4).
both models (Table 7). Moreover, both models have the same
sensitivity, i.e., 87.23%; with specificities of 47.05% (the GIS
expert system) and 35.29% (the logistic regression), respec-
tively (Table 6). This reveals that they were equally good at pre-
dicting presence, but not very accurate for absence. Although
not particularly impressive, the GIS expert system was better
at predicting absence. Note that the logistic regression pre-
dicted matsutake to be present in 76.9% of the study area,
compared with 61.4% presence predicted by the GIS expert
system.

The results of the sensitivity analyses are shown in
Figs. 3 and 4. For the logistic regression model, the accuracy

level is relatively stabile (around 65.43%) when the threshold
is less than 0.65, but above this value there is an abrupt drop
in accuracy as the consequence of the rapid increase of false
presence (Fig. 3). Thus it appears that adopting a threshold

tic regression (threshold = 0.5); (b) the GIS expert system (a
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Table 6 – Error matrices of the two models: (a) logistic regression (threshold = 0.5) and (b) the GIS expert system (a priori
for absence = 0.4)

No. of pixels from reference

Absence Presence Total

(a) Logistic regression
No. of pixels from model

Absence 11 5 16
Presence 23 42 65
Total 34 47 81

Overall accuracy 65.43%

(b) Expert
No. of pixels from model

Absence 16 6 22
Presence 18 41 59
Total 34 47 81

Overall accuracy 70.37%

Table 7 – Statistics for evaluation of model performance

Overall accuracy (%) Sensitivity (%) Specificity (%) K K variance Z

Logistic regression 65.43 87.23 35.29 0.2343 0.00223 1.89 (NS)
Expert 70.37 87.23

NS, not significant (p < 0.05).

Fig. 3 – The accuracy changes with different thresholds that
divide “presence” and “absence” for the logistic regression.

bark may act as a carbon source for matsutake development
(Vaario et al., 2002), and they are also likely to be important as
mulch, maintaining a moist, dark microhabitat. The impor-
tance of litter cover to matsutake concurs with statements by

Fig. 4 – The change of specificity, sensitivity and overall
Decreasing accuracy at levels above 0.65 reflect an increase
of false “presence” results.

value of 0.5 is appropriate. For the GIS expert system, when
the a priori probabilities for absence range from 0.01 and 0.8
the overall accuracy remains relatively stable. However, the
specificity and sensitivity change considerably; these changes
are inversely related with specificity increasing as sensitivity
decreases (Fig. 4).

5. Discussion
5.1. Ecology of matsutake in northwest Yunnan

Forest type, litter cover and elevation were consistently shown
to be the most significant environmental factors influencing
47.05 0.3605 0.00225

matsutake distribution. That forest type is important is
unsurprising since the presence of matsutake globally is
associated with specific tree species from the Pinaceae and
Fagaceae (Cao and Yao, 2004). In the study area, T. matsutake is
generally associated with Pinus densata and Quercus pannosa.
The role of litter cover on matsutake presence is not yet clear.
Tree litter components, such as oak leaves, pine needles or
accuracy with increase of a priori probability set for absence
input for GIS expert system (it also implies the decrease of
a priori probability set for presence, since the sum of a prior
for absence and presence is always equal to 1).
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ushroom pickers that areas where litter has been removed
y raking (caused by less experienced mushroom pickers) are
elatively unproductive.

Elevation is unlikely to directly influence the distribution of
atsutake, but greatly modifies other environmental variables

uch as temperature and habitat disturbance. Air temperature
eclines with increasing elevation at a rate of 6 ◦C per 1000 m

Lookingbill and Urban, 2003)—this will be directly reflected
n soil temperatures. There must be an optimum temperature
nd moisture balance for matsutake, and temperature thresh-
lds could be critical for the development and fructification
f the mushroom (Hosford et al., 1997; Kinugawa, 1963). To
ome extent elevation may also reflect the degree of human
isturbance on matsutake habitats. Lower areas are readily
ccessible and heavily utilized by local people; for instance,
illagers traditionally use oak branches and leaves as fuel, ani-
al bedding and farmyard compost. Many oak forests around

he villages are noticeably stunted and have formed bushy
abits. Similarly, pine forests at low elevation are conspicu-
usly thinned due to timber utilization for house construc-
ion. Disturbance does not favor matsutake; this was shown
n the statistical analyses where thinner forest canopy was
ssociated with a lower probability of matsutake presence.
espite the obvious importance of forest type, litter cover
nd elevation, however, there is clearly a complex interac-
ion of variables influencing matsutake, such as the age of
ost trees, microbial competition (Ogawa, 1976), and dynamic
rocesses including management practices and wild life inter-
ction (Amaranthus et al., 1996).

.2. Model performance and its factors

trictly speaking the same input data set should be used for
odel comparison. However, in addition to the three most

mportant layers (forest type, litter and elevation) identified in
he initial statistical analysis, the mushroom pickers and local
xperts insisted that topographic features, slope and aspect
lso play crucial roles in matsutake distribution; hence, they
re also included into the GIS expert system. To some degree
his could contribute to the difference of the two outputs.

Both models predict the matsutake distribution with mod-
rate accuracy. Statistically, the GIS expert system gives a
lightly better result (approximately 5% improvement) than
he logistic regression in overall mapping accuracy, while the
-test showed that there is no significant difference in the
ccuracy level of the maps produced by the two methods.
owever, the spatial distribution of matsutake, as predicted by

he two methods, produced somewhat visually different maps
see Fig. 2). The GIS expert system predicts more areas of mat-
utake absence than the logistic regression model. Which one
s correct? The expert system seems subjectively to be more
easonable based on field observation and experience—the
reas of difference between the two models (i.e., where logistic
egression predicts matsutake presence, but GIS expert does
ot) are located at elevations greater than 3700 m, where there

s little probability of matsutake occurring.

Model performance can be affected by various factors, such

s quality of the input data, limitations of the model itself,
nd the sampling techniques. In our study, errors can be intro-
uced to both models by input layers such as forest type and
8 ( 2 0 0 6 ) 208–218 215

litter cover mapping. They may also be introduced by the
derivation of topographic data sets, for instance, interpolat-
ing the DEM from contour line and high points; calculating the
slope and aspect from the DEM; and geometric corrections of
satellite images.

In terms of model limitations, the GIS expert system
depends greatly on the validity of different sources of expert
knowledge. When different sources disagree, some form of
subjective assessment is necessary. In Jidi, for example, mush-
room pickers stated that matsutake prefers a southerly aspect,
but the Mann–Whitney U test suggested a slightly higher prob-
ability on the northerly aspect. The local expert opinion was
supported by findings in North America (Hosford et al., 1997)
that suggested a southwest aspect is optimal. After weighing
the data and using personal field knowledge, we eventually
assigned a slightly higher probability to the southerly aspects.
However, the integration of knowledge from different sources
can be somewhat arbitrary, hence a careful process should be
taken into consideration.

The relatively poor performance of the logistic regres-
sion could be, in part, caused by the form of the algorithm
employed. As used in this study, the algorithm is a trans-
formed linear regression, in which the probability of mat-
sutake presence becomes higher with increasing litter cover
and elevation. However, the relationship between matsutake
presence and elevation is not linear in nature. From lower to
middle elevations, matsutake presence increases with higher
elevation, but, above 3700 m, the chances of finding matsutake
diminish. While logistic regression overestimates mushroom
presence in these high areas, the GIS expert system’s “con-
straint rules” avoid this kind of error. The introduction of a
more complex form of logistic regression model with poly-
nomial, quadratic, or spline surface functions would likely
reduce this problem. Similarly, there may also be value in
exploring the usefulness of a rule based logistic regression
such as the GARP model (Anderson et al., 2003). The efficacy
of using these techniques is clearly a subject for future work.

The poor performance of both models to predict absence
could be due to two reasons: (1) matsutake is particularly
prevalent in the study area; (2) identifying absence is much
more difficult than presence (see Section 5.4)—thus false infor-
mation about matsutake absence would contribute to the low
specificity.

5.3. Choosing the best model

A wide range of methods to model species distribution are
available, but, whatever method is employed they all depend
upon the relationships between environmental variables and
the species considered (Corsi et al., 2000). These relationships
can be defined inductively by statistical approaches or deduc-
tively by human experts and/or empirical experience. Choos-
ing the most appropriate model can be difficult. Often we
select the model with higher mapping accuracy; however, the
selection of a model must balance mapping accuracy against
user requirements, availability of information, and cost (Smits

and Dellepiane, 1999). If the purpose of the study is to pro-
vide basic information for matsutake management, then fast,
easy and low cost methods will be preferred. In this study, we
applied both inductive and deductive approaches. The well
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established logistic regression model quantified the relation-
ship first, and then extrapolated spatial distribution over the
study area using this relationship; by contrast, the GIS expert
system used pre-existing expert knowledge to infer the spatial
distribution of species. We showed that the GIS expert system
produces reliable results and higher mapping accuracy than
the logistic regression model.

Not only did the GIS expert system outperform the logistic
regression, but the former also requires relatively few samples.
For the logistic regression model, two independent sample
sets are required, one for developing the model and the other
for evaluation, whereas, the GIS expert system only requires
an evaluation (or test) sample set. Furthermore, a statistical
approach using the regression model requires relatively large
quantities of good quality data. First, the number of samples
for building the model has to be reasonably high; Huisman et
al. (1993) suggested a minimum of 50 samples and 250 sam-
ples for a more accurate model. Secondly, a complete data
set is essential as missing values hamper the logistic regres-
sion model development. Obviously, parsimonious sampling
is important as fieldwork is always time consuming and costly,
for this reason there is a growing trend to try and predict
species distributions from limited datasets without compro-
mising accuracy (Stockwell and Peterson, 2002). This has an
important practical implication for management. When ade-
quate samples are not available, incorporating local expert
knowledge can help make better-informed management deci-
sions. However, this does not necessarily indicate that the
logistic regression is inferior to the GIS expert system. As dis-
cussed earlier, the GIS expert system relies on the valid habitat
knowledge and is susceptible to human subjectivity of infor-
mation input.

5.4. Difficulty of predicting mushroom presence

Although the logic and methods of modelling mushroom and
vascular plant distributions are similar, working with mush-
rooms is far more problematic. Firstly, the reflectance as mea-
sured by remote sensing gives little or no direct indication of
the nature of the understorey and ground cover; rather iden-
tification of understorey plants or plant communities is based
on the deduced relationships with overstorey and topography.
There are also sampling limitations with mushrooms because:
(a) they are small; (b) vegetative growth is underground; and (c)
the duration of the above ground sporocarp is limited. More-
over, sampling only the presence or absence of sporocarps
is likely to reject many sites in which hyphae are present.
Refining a sampling strategy specifically designed for organ-
isms like mushrooms is desirable, but this will require a better
understanding of mushroom ecology.

5.5. Species distribution modelling for NWFP
management

The difficulties of mapping matsutake are indicative of the
challenges of modelling non-wood forest products (NWFP)

generally. NWFP tend to be unobtrusive species and/or lower
plants. However, there is a need to monitor NWFP as they
provide important natural resources (Arnold and Perez, 2001;
FAO, 1995). About 80% of the population of the developing
1 9 8 ( 2 0 0 6 ) 208–218

world use NWFP for health and nutritional needs, and several
million households worldwide depend heavily on NWFP for
subsistence and/or income (FAO, 2002). At the same time, the
threat to NWFP resources and their rate of extinction are being
driven by increasing use, especially for commercial purposes
(Schippmann et al., 2002). Distribution maps of NWFP habi-
tat can be integrated with other knowledge (for instance site
productivity) to estimate overall production or to assist pol-
icy makers to formulate management planning and balanced
land access for these natural resources. In the Jidi area, for
example, mastutake habitat maps can be used to help design
a rotational harvesting plan.

Developing ways to model NWFP is of particular impor-
tance in China, which is undergoing rapid large-scale changes
in land-use. China is emerging from periods of enforced
state directed agricultural land-use to a system of individual
responsibility that has given greater freedom and incentive for
local people to develop industries. Similarly, the commercial
logging ban has forced a redirection of economic and agricul-
tural resources (Yeh, 2000). In many of the poorest regions of
southwest China, agriculture is primarily for self-subsistence
and unlikely to ever produce income; for these rural commu-
nities, the sustainable use of NWFP is essential (particularly
matsutake, which is now the most profitable). This sustain-
ability is important, not only for the ongoing livelihoods of
these people, but also in terms of preserving many NWFP that
are facing rapid depletion and/or extinction.

6. Conclusions

Although the models presented here have clear limitations,
this study has demonstrated that it is possible to model mush-
room habitat in complex terrain with a reasonable level of
accuracy. Models used for predicting distribution of other
organism can be applied to mushroom. However, a pragmatic
approach is important because modelling something as elu-
sive as fungi is laced with difficulties. Not only is the ground
habitat invisible from aerial views, but even ground-truthing
with local experts requires a measure of good fortune to find
the mushrooms (on the rare occasions when they are above
ground). This is where local knowledge and judicious subjec-
tive decision making is invaluable. Incorporation of this type
of information into a GIS expert system is the first step in cre-
ating a parsimonious model of mushroom habitats. Although
we found the GIS expert system outperformed the logistic
regression model, both in terms of accuracy and sampling effi-
ciency, future refinements with multiple regressions are likely
to lead to ever more accurate mapping. These preliminary
habitat models provide a platform on which future ecophysio-
logical research can be based that will enable the construction
of more refined models, and more importantly, better conser-
vation management.
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