Contents lists available at ScienceDirect

Fitoterapia

journal homepage: www.elsevier.com/locate/fitote

A new proaporphine alkaloid from Meconopsis horridula

Haifeng Wu^{a,b,d,*}, Lisheng Ding^b, Jianwei Shen^a, Huajie Zhu^c, Xiaofeng Zhang^{a,*}

^a Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China

^b Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China

^c State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650223, PR China ^d Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China

Graduate University of Chinese Academy of Sciences, Deijing 100045, 1K China

ARTICLE INFO

Article history: Received 15 January 2009 Received in revised form 14 February 2009 Accepted 21 February 2009 Available online 3 March 2009

Keywords: Meconopsis horridula Papaveraceae Proaporphine 8, 9-Dihydroprooxocryptochine

1. Introduction

Meconopsis horridula Hook. f. & Thomson (Papaveraceae), a perennial herb growing at an altitude of 3000–5000 m in the Qinghai–Tibet plateau area, is traditionally used as Tibetan folk medicine for the treatment of headaches and fractures [1]. Among its previously investigated chemical components, isoquinoline alkaloids were noteworthy [2,3]. In continuation of our efforts to investigate bioactive components of the genus distributed in Qinghai–Tibet plateau area, a new proaporphine alkaloids, protopine (2) [4,5], (-)-reframoline (3) [6] and (-)-amurensinine (4) [7,8] (Fig. 1), were isolated from the ethanol extract of the aerial parts of this plant. In the present paper, we report the isolation and structure elucidation of the new proaporphine alkaloid.

ABSTRACT

A new proaporphine alkaloid, 8, 9-dihydroprooxocryptochine (1), together with three known alkaloids, was isolated from the aerial parts of *Meconopsis horridula* Hook. f. & Thomson (Papaveraceae), a traditional Tibetan medicine. The structure of 1 was determined by spectroscopic methods.

© 2009 Elsevier B.V. All rights reserved.

2. Experimental

2.1. General

IR spectrum was recorded on a Perkin-Elmer Spectrum-One FT–IR spectrometer. NMR experiments were recorded on a Bruker AM-600 spectrometer using TMS as an internal standard. HR–ESI–MS and ESI–MS spectra were obtained using a Bruker Bio TOF Q and Finnigan LCQ^{DECA} mass spectrometers, respectively. Column chromatographies were performed on self-packed open column with silica gel (160–200, 200–300 mesh, Qingdao Marine Chemical Group Inc. China).

2.2. Plant material

The aerial parts of *M. horridula* were collected in the Yushu Tibetan Autonomy Prefecture of Qinghai Province in August 2003, and identified by Prof. Xiaofeng Zhang. A voucher specimen (M20030803) was deposited in the Herbarium of Northwest Institute of Plateau Biology, Chinese Academy of Sciences.

2.3. Extraction and isolation

Dried and powered plant material (8 kg) was extracted exhaustively with 80% EtOH at r.t. The EtOH extract was, after

^{*} Corresponding authors. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, PR China. Tel.: +86 28 85223843; fax: +86 28 85222753.

E-mail addresses: wwwtony505@yahoo.com.cn (H. Wu), xfzhang@nwipb.ac.cn (X. Zhang).

⁰³⁶⁷⁻³²⁶X/\$ – see front matter 0 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.fitote.2009.02.007

Fig. 1. The structures of compounds 1–4.

evaporation to dryness under reduced pressure, acidified with 5% HCl, filtered and extracted with EtOAc. The aqueous acid solution was made alkaline with 25% NH₄OH to pH 9. The alkaline solution was extracted exhaustively with CHCl₃ to give crude alkaloid mixture (5 g). The crude alkaloid mixture was subjected repeatedly to Si-gel CC eluting with petroleum etheracetone–diethyl amine and CHCl₃–MeOH–diethyl amine gradient to afford compounds 1 (6 mg), 2 (20 mg), 3 (8 mg) and 4 (8 mg).

8, 9-Dihydroprooxocryptochine (1), yellow solid; IR bands (KBr): 3400, 2931, 1725, 1504, 1482, 1417, 1287, 1056 cm⁻¹; HR-ESI-MS *m*/*z* (positive mode): 322.1063 [M + Na]⁺ (calcd. for $C_{17}H_{17}NO_4Na$: 322.1061); ESI-MS *m*/*z*: 322 [M + Na]⁺, 300 [M + H]⁺ and 298 [M - H]⁻. ¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) data: see Table 1.

3. Results and discussion

8, 9-Dihydroprooxocryptochine (1) was obtained as an optically inactive yellow solid. Its molecular formula was

Table 1 1 H and 13 C NMR data and key HMBC correlations for 1 in CDCl3 (δ in ppm andJ in Hz).

Carbon	$\delta_{\rm H}$	δ_{C}	HMBC $(H \rightarrow C)$
1		141.6	
2		154.3	
3	7.05 s	100.7	C-3a, C-7c, C-1, C-4
3a		123.5	
4	7.61 d (5.7)	120.9	C-7c
5	8.64 d (5.5)	145.4	C-3a, C-6a
6a		151.2	
7		206.8	
7a		49.9	
7b		130.8	
7c		134.6	
8, 12	2.38 td (14.0, 4.0) ax	29.8	
	1.83 brd (14.0) eq		
9, 11	2.21 m ax	30.3	C-7a
	1.96 m eq		
10	3.83 m	69.9	
OMe-2	4.07 s	56.7	C-2

ax: axial; eq: equatorial.

determined as $C_{17}H_{17}NO_4$ by HR-ESI-MS ([M+Na]⁺ m/z 322.1063, calcd. 322.1061). The IR absorption indicated the presence of hydroxyl (3400 cm^{-1}) and carbonyl groups (1725 cm⁻¹). The ¹³C NMR spectrum showed 17 carbon signals including a carbonyl group (δ 206.8), nine aromatic carbons, an oxymethine (δ 69.9), a methoxyl group (δ 56.7), a quaternary carbon (δ 49.9) and four aliphatic methylenes. The ¹H NMR spectrum exhibited a pair of *ortho* aromatic protons at δ 8.64 and 7.61, an aromatic proton singlet at δ 7.05 and some aliphatic absorption. These evidences together with 2D-NMR spectra, suggested that 1 was a proaporphine alkaloid with the same skeleton as prooxocryptochine [9]. In the ¹H NMR and ¹³C NMR spectra, the absence of olefinic signals indicated that 1 was the hydrogenation product of prooxocryptochine. The methoxyl group placed at C-2 was confirmed by the NOE correlation between OMe and H-3. H-10 was determined at be pseudo-axial by the correlations of H-10 (δ 3.83) with H-8ax (12ax) (δ 2.38) and H-9eg (11 eg) $(\delta 1.96)$ in the NOESY spectrum (Fig. 2). A full assignment of the ¹H NMR and ¹³C NMR was established by HSQC and HMBC correlation.

Acknowledgements

This work was supported by grants from the Chinese Academy of Sciences (YZ-06-1) and the National Key Technology R&D Program of China (2007BAI31B02).

Fig. 2. Key NOESY correlations of 1.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.fitote.2009.02.007.

References

- [1] Northwest Institute of Plateau Biology. Chinese Academy of Sciences. Handbook of Tibetan Medicine. Xining: Qinghai People's Press; 1991. p. 465.
- [2] Slavík J. Collect Czech Chem Commun 1960;25:1663.
- [3] Xie HY, Xu JC, Teng RW, Li BJ, Wang DZ, Yang CR. Fitoterapia 2001;72:120.
- [4] Guianudeau H, Shamma M. J Nat Prod 1982;45:237.
- [5] Johns SR, Lamberton JA, Tweeddale HJ, Willing RI. Austral J Chem 1969;22: 2233.
- [6] Gözler B, Gözler T, Freyer AJ, Shamma M. J Nat Prod 1988;51:760.
- [7] Šantavý F, Maturová M, Hruban L. Collect Czech Chem Commun 1966;36: 4286.
- [8] Sariyar G, Phillipson JD. Phytochemistry 1980;19:2189.[9] Wu TS, Lin FW. J Nat Prod 2001;64:1404.